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Abstract

Artificial neural networks designed to learn multiple tasks were shown to outper-
form those with a single objective. We explore the effectiveness of introducing
multiple auxiliary tasks to improve the performance of a multimodal neural net-
work. We create a synthetic dataset explicitly designed for a robotic grasping task,
with the goal of grasping objects and relocating them based on natural language
commands. We design a neural model combining multi-sensory input through in-
termediate fusion. The multimodal integration process combines individual deep
neural models specializing in specific tasks, composing a single network for grasping
objects given an image and a natural language command. The vision and natural
language modalities perform domain-specific tasks with independent output heads
branching from both neural models. We refer to these output heads as intermedi-
ate representations. We use a symbolic Robot Command Language (RCL) as an
intermediate representation between the language network and the fusion network.
The vision network has two intermediate representations for localizing objects in
images and for classifying them.

We ablate the intermediate representations forming all possible combinations.
Our experiments show that certain intermediate representations result in an over-
whelming loss contribution to the entire model, distorting the main task’s objec-
tive. However, other losses contribute positively to the model’s overall perfor-
mance and act as regularizers. Our results also indicate that choosing RCL as
an intermediate representation outperforms natural language as an intermediate
representation.
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Abstract

Zusammenfassung

Es wurde gezeigt, dass künstliche neuronale Netzwerke, die zum Erlernen mehrerer
Aufgaben entwickelt wurden, jene neuronale Netzwerke übertreffen, denen lediglich
eine einzige Aufgabe zugeteilt wurde. Wir untersuchen die Wirksamkeit der
Einführung mehrerer Hilfsaufgaben, um die Leistung eines multimodalen neu-
ronalen Netzes zu verbessern. Dazu erstellen wir einen synthetischen Datensatz,
der explizit für eine Roboter-Greifaufgabe konzipiert wurde, mit dem Ziel, Ob-
jekte zu erfassen und sie zu versetzen, dieses auf der Grundlage von Befehlen in
natürlicher Sprache. Wir entwerfen ein neuronales Modell, das multisensorischen
Input durch Zwischenfusion kombiniert. Der multimodale Integrationsprozess
kombiniert einzelne Deep Neural-Modelle, die sich auf spezifische Aufgaben spezial-
isieren, und bildet ein Netzwerk um Objekte zu greifen auf Grundlage von einem
Bild und einem Befehl in natürlicher Sprache als einzige Informationsquellen. Die
Sicht- und Sprach-Modalitäten führen domänenspezifische Aufgaben mit unabh-
ngigen Ausgaben, die aus den beiden neuronalen Modellen auszweigen. Wir beze-
ichnen diese Ausgaben als Mitteldarstellungen und verwenden eine symbolische
Robot Command Language (RCL) als Darstellung zwischen dem Sprachnetzwerk
und dem Fusionsnetzwerk. Das Netzwerk, welches sich mit den Bildern befasst,
verfügt über zwei Zwischendarstellungen um Objekte in Bildern zu lokalisieren und
sie zu klassifizieren.

Wir ablatieren die Zwischendarstellungen um so alle möglichen Kombinatio-
nen zu bilden. Unsere Experimente zeigen, dass bestimmte Zwischendarstellungen
zu einem überragenden Verlustbeitrag zum gesamten Modell führen und das Ziel
der Hauptaufgabe verzerren. Andere Verluste wirken sich jedoch positiv auf die
Gesamtleistung des Modells aus und wirken als regularisierend. Unsere Ergebnisse
zeigen auch, dass die Wahl der RCL als intermediäre Darstellung die natürliche
Sprache als intermediäre Darstellung übertrifft.
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Chapter 1

Introduction

Robots have become an integral part of the industry, performing tasks which are
considered too repetitive, precise or dangerous for humans. Many of these tasks
require robots to interact with people, providing them with assistance. One such
robot is NASA’s Robonaut which helps astronauts during space missions [2]. As
more tasks require engagement with humans, the need for communication with
robots becomes vital. In the field of human-robot interaction, researchers aim to
facilitate interaction with robots and provide a seamless means for conversing with
them through verbal communication (oral and written). The goal is to allow robots
to perform actions requested by people easily and naturally.

Robots would need to interact with their environment in response to requests
by people. Grasping objects, which we as humans would consider a trivial task,
remains a challenge for robots and machines to perform. Initial research focused
on analytical methods for predicting grasp coordinates [77, 69]. Nowadays neural
networks are commonly used for visuomotor tasks concerning object grasping and
localization [21, 50]. A trend towards end-to-end learning developed with the ad-
vancement of deep neural networks and the availability of huge data sources [45].
End-to-end architectures are often criticized for their sizeable computational over-
head and big data requirements, however, multi-task learning [13, 90] has been
shown to improve performance with fewer data [84, 46].

Some of the mentioned studies rely on multiple sensory inputs, fused within the
networks. Fusion of multi-sensory input could either be performed by removing
correlations across sensory input sources or by reducing them to a common dimen-
sion [74]. Fusing units within neural networks is known as intermediate fusion [86].
Examples on intermediate fusion include [80, 59]. Late fusion in the context of deep
neural architectures is employed through voting or ensemble networks, combining
classification outcomes of multiple networks [12]. However, since late fusion relies
on inferred values and not on the input data, it is not robust to subtle changes in
the sensory input, especially when operating on inputs from different modalities.

In this Thesis, an intermediate representation refers to a structured, symbolic
or feature output by a subnetwork. Intermediate representations learn auxiliary
tasks, thus simplify the learning target at multiple stages within the network. Hav-
ing an intermediate output branching from a subnetwork is a form of multi-task

1



Chapter 1. Introduction

learning with enforced hierarchy [34]. In other words, the fusion network processes
the learned information without attempting to deduce an encoding that unifies
all the modalities. An intermediate representation for natural language could be
expressed in the form of a logical representation. Zettlemoyer and Collins propose
an algorithm for lambda-calculus parsing of semantic representations from natural
language sentences [107]. Berant et al. [8] propose an improvement upon Zettle-
moyer’s and Collins’ approach by mapping natural language phrases to logical
predicates through the alignment of a text corpus to Freebase [10]. For the pur-
pose of this Thesis, we choose to use a more simplified language called the Robot
Command Language (RCL) [19] directed towards the robotic command spatial
domain.

The combination of multiple task oriented subnetworks results in the complete
multimodal architecture. Multi-task learning approaches introduce multiple heads
as final outputs for the entire model; however, it is uncommon to address interme-
diate representations at different stages within the network. Having intermediate
outputs for each subnetwork encourages each network to specialize in its task while
providing context for other subnetworks.

We focus on integrating multi-sensory input to realize a sensorimotor encoding,
which allows a robot to grasp an object and place it at another location. This
research will be centered around creating a network architecture which enables
the combination of transcribed natural language input and visual input. Given
natural language input, together with visual data, a robot will not only have to
understand the visual scene, but it would also require a semantic understanding
of the context of the utterance. The context is inferred by the combination of all
the two specialized networks dedicated to understanding visual and textual data
independently.

Having an intermediate representation may provide more profound insights into
the functionality of the network but may require a hand-crafted labeled dataset.
We instead resort to creating a synthetic dataset described in chapter 3. An end-
to-end network without intermediate representations may perform better than its
counterparts with auxiliary tasks; however, the latent representation may prove
human-unreadable, restricting the network to the task for which it was built. We
aim to explore whether a neural model can learn to grasp and perform actions yet
maintain a coherent encoding at different stages with the employment of interme-
diate representations. This approach would facilitate the transferability of partial
weights (weights belonging to a specific modality in the network) to other models
as well.

We construct the modalities of the neural network using multiple deep neural
network architectures, set up to address each problem individually. The modalities
are then combined into a single network through intermediate fusion, which shall
be referred to as FusionNet from this point onwards. The FusionNet decodes
the inputs and produces joint coordinates, which trigger a moving arm to act.
To develop each module, We chose networks which have been demonstrated to
perform well at their task. We employ two networks, one targeted at detecting
objects in images, and another for translating natural language commands to RCL

2
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Figure 1.1: An overview of the complete FusionNet architecture

trees.
To translate natural language sentences to RCL, We use the Transformer [103],

an attention [5] based feed-forward network. The Transformer outperforms a Con-
volutional Neural Network (CNN) [57] such as ByteNet [47] and CovS2S [29].
Although RNMT+ [14] outperforms the Transformer, it employs recurrence. Re-
current neural networks have a maximum path length complexity of O(log n) in
comparison with the Transformer having a complexity of O(log n). The Trans-
former is, therefore, a more efficient alternative. State-of-the-art results in detect-
ing boundaries and classifying objects in images were achieved by RetinaNet [62]
which we use to localize and detect objects.

The ultimate goal is to realize an end-to-end system capable of performing mo-
tor actions given multi-sensory input. We employ several intermediate represen-
tations branching from the different modalities. The intermediate representation
for the machine translation network is the symbolic RCL. The intermediate repre-
sentation for the vision network is in the form of bounding boxes surrounding the
targeted objects as well as their classes. The general structure of our FusionNet
model is shown in figure 1.1.

To construct a robust FusionNet, we would need to optimize the modalities.
We perform experiments on each modality independently, starting with the Trans-
former where we optimize the network to our dataset’s requirements in chapter
5. The RetinaNet specific experiments are conducted in chapter 6. Eventually,
we perform experiments on our FusionNet model and examine the necessity of in-
termediate representations in chapter 7. In chapter 7, we also test the optimized
FusionNet on a simulated model of the NICO [49] robot. In chapter 2, we pro-
vide the background information necessary for constructing the FusionNet which
is described in chapter 4.

3



Chapter 1. Introduction

In this Thesis, We aim to answer the following question:

Do intermediate representations increase performance in a multimodal neural net-
work?

• Is an intermediate symbolic representation required between the language
translation network and our fusion network?

• Is an intermediate representation required between the vision network and
our fusion network?

4



Chapter 2

Background Theory

In this chapter, we discuss the different components and building blocks used in the
Thesis. We mainly focus on artificial neural networks and detail the mechanism
by which they operate. This chapter offers an overview of the tools and methods
used, without relating them directly to our approach. We aim to introduce the
fundamentals for understanding the scope of the Thesis, without diving deep into
every concept and theory. The readers are advised to refer to the cited resources
for comprehensive details on certain topics.

2.1 Neural Networks

Artificial neural networks are machine learning models for approximating func-
tions, inspired by the behavior of neurons in brains. This class of techniques relies
on observing multiple samples of data, adjusting their parameters (weights) to
predict a value which closely resembles the ground truth. Such networks are com-
posed of multiple layers, each learning different features at varying granularity. A
neural network composed of multiple layers is known as a multi-layer percep-
tron (MLP) [91]. The layers are composed of units, analogous to their biological
parallel known as neurons. The number of units per layer is arbitrary and can be
adjusted according to a networks architecture and needs. In its simplest forms,
an MLP is composed of three layers: an input layer which takes features as an
input, an intermediate (hidden) layer which combines those features, and the out-
put layer which presents the resulting features or classes. The weights mentioned
earlier are the parameters of neural networks. These weights are adjusted as the
network learns, having values which, when multiplied with their input, will reduce
the error of the prediction. As the error reduces, the prediction begins to resemble
the ground truth closely. The output of a layer is defined as:

y = σ(x · wx + wb) (2.1)

where x is the input vector to the layer y and w is the weight vector for a given unit’s
connections to units from the preceding layer. A bias unit is introduced, denoted
by b, having an independent weight vector wb. Considering that xwx results in a
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Chapter 2. Background Theory

linear function with a gradient influenced by the values of the two vectors, we can
influence the steepness of the line, yet shifting the function vertically would not
be possible without the added bias wb. Even though the inner term x · wx + wb
is suitable to estimate a linear function, many of the problems that would require
the usage of neural networks are non-linear by nature. Applying non-linearity
to such functions resolves this setback, allowing neural networks to predict them
approximately. In equation 2.1, σ denotes the non-linear function applied to the
linear computation. A formerly common function known as sigmoid was used to
introduce such non-linearity. The sigmoid is defined as:
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Figure 2.1: The sigmoid function
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Figure 2.2: The sigmoid function derived
with respect to x

σ(x) =
1

1 + e−x
(2.2) σ(x)′ = σ(x) · (1− σ(x)) (2.3)

The sigmoid introduces a non-linearity resembling a smooth step function as shown
in figure 2.1. The sigmoid output is limited to a range between ∈ [0, 1]. Such a
function is especially useful when the output predicted is expected to be a proba-
bility of an event occurring. Suppose an output unit produces a binary output, i.e.,
True(1) or False(0) for a given category, the network would predict a probability
for each of the two class. Another important aspect which should be sought after
when choosing an activation function (a non-linear function) is its differentiability.
As shown in figure 2.2, differentiating the sigmoid using equation 2.3 results in yet
another function. An activation function must be differentiable in order to update
the weights of the network when using techniques such as back-propagation for
learning (more on back-propagation in section 2.1.2).

2.1.1 Forward pass

Each iteration of the neural network’s learning process is composed of two stages:
a forward pass where the output is computed, and a backward pass through which
the weights are updated. The forward pass is identical to the process followed
during inference. Suppose we try to perform the binary addition of two bits, i.e.:
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2.1. Neural Networks

{1}+ {0} equals {0, 1}. In figure 2.3, we observe the weight placeholders for each
connection. We compute the projection of each input vector on to the weight
vector and apply the activation function for each layer iteratively. Assuming the
weights have already been acquired as shown in table 2.1 and table 2.2, the first
step is to compute the outputs of each intermediate layer. To compute the output

x0

x1

h0

h1

+1 +1

wx[0,0] wh[0,0]

wh[1,0]

wb2[0]

wh[1,1]

wh[0,1]

wb2[1]

wx[1,0]

wb1[0]

wx[1,1]

wx[0,1]

wb1[1]

y0

y1

Figure 2.3: A simple feed forward fully-connected neural network with two layers.
The input units are denoted by x, the intermediate units by h and the output units
by y. Bias units are displayed as +1

Table 2.1: Connection weights

w
[0,0]
x 6.04 w

[0,0]
h 10.01

w
[0,1]
x −6.05 w

[0,1]
h −10.03

w
[1,0]
x 6.04 w

[1,0]
h −2.62

w
[1,1]
x −6.05 w

[1,1]
h −10.29

Table 2.2: Bias weights

w
[0]
b1 −9.22 w

[0]
b2 −4.98

w
[1]
b1 2.48 w

[1]
b2 5.03

of the intermediate unit h0:

ĥ0 = σ(w[:,0]
x · x+ w

[0]
b1 ) (2.4)

Having inputs of x0 = 1 and x1 = 0, h0 would be computed as follows:

ĥ0 = σ((6.04 · 1) + (6.04 · 0) + (−9.22 · 1)) ≈ 0.02 (2.5)

Replacing w
[:,0]
x with w

[:,1]
x and w

[0]
b1 with w

[1]
b1 , we can acquire the the value for ĥ1,

having ĥ1 ≈ 0.03. After acquiring the outputs of the intermediate layer, we pro-
ceed to compute the final output given the values of ĥ0 and ĥ1 as the outputs of
the preceding layer. We would as a result get a value of ŷ0 ≈ 0.008 and ŷ1 ≈ 0.990.
In table 2.3, the final outputs for all input combinations can be observed. The ex-
pected output column indicates the ground truth values, whereas the actual output
column represents the resulting values computed by applying the forward pass. We
observe that the actual outputs closely approximate the expected outputs.
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Chapter 2. Background Theory

Table 2.3: Forward pass computation for the binary addition neural network.

Input Expected output Actual output

x0 x1 y0 y1 ŷ0 ŷ1

0 0 0 0 0.001 0.011

0 1 0 1 0.009 0.987

1 0 0 1 0.009 0.987

1 1 1 0 0.989 0.012

2.1.2 Backward pass

In the backward pass, we update the weights for each connection given an error
value. The objective is to minimize the error as much as possible between the
actual and the expected output. In the context of neural networks, such an error
measurement is referred to as the loss.

Loss functions

Depending on the problem at hand, one would choose a loss accordingly. It is
common to use the Mean Squared Error (MSE) for regression problems. The MSE
measures the average of the squared errors between the the prediction and the
ground truth. It is defined as:

MSE =
1

N

i=N∑
i=1

(y(i) − ŷ(i))2 (2.6)

where N represents the total number of training samples, i is the counter iterating
over the training samples, ŷ(i) is the prediction for sample i, and y(i) is the ground
truth for sample i. Many loss functions could be found in literature, however,
MSE remains a favourable function for regression problems. The MSE can be
reformulated in the form:

MSE(θ) = V arianceθ(θ̂) +Biasθ(θ̂, θ)
2 (2.7)

The V ariance, besides its mathematical definition signifies how closely the esti-
mate resembles the training data. A low V ariance suggests minuscule changes to
the target function’s estimate in accordance with the training data. On the other
hand, a high V ariance suggests large changes to the target function’s estimate.
Bias, however, represents the trade-offs the estimator makes in order to simplify
the learning procedure, usually by ignoring or mitigating features at the cost of
generalization. An illustration of a high V ariance and high Bias is shown in fig-
ure 2.5. Since the goal of a neural network is to minimize the loss, this would
also mean a minimization of the V ariance and Bias, which is the outcome that is
sought after.
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2.1. Neural Networks

For classification problems, it is common to use the Cross-Entropy (CE) or a
similar loss function to compute the error between the prediction and the ground
truth. The cross-entropy is defined as:

CE = − 1

N

i=N∑
i=1

(y(i) · log (ŷ(i))) + ((1− y(i)) · log (1− ŷ(i)))) (2.8)

The cross entropy measures the performance of a classification model assuming the
prediction is a probability, limited to the range of 0 and 1. Assuming that both the
prediction and the ground truth represent two separate probability distributions,
our goal is to measure the entropy (as defined in information theory) [101, p.4]
between them.

Activation functions
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Figure 2.4: The ReLU and tanh activation functions

For the binary addition example described in section 2.1.1, we used the sigmoid
as our activation function. Although it served the intended purpose of introducing
non-linearity to the model, the sigmoid function suffers from major setbacks as
the number of hidden layers increases. We observe that as the prediction tends
towards higher or lower values, the gradient slope decreases exponentially, until
it eventually settles (reaches a value of 0). At that point, the weights are not
modified and no learning takes place. Another issue observed with the sigmoid
is the strength of its gradients [58, s.4.4]. We can mitigate this issue by using a
hyperbolic tangent function (tanh) instead. The tanh function is described as:

tanh(x) =
e2x − 1

e2x + 1
(2.9)
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Chapter 2. Background Theory

As shown in figure 2.4, we notice that the range of the tanh function spans between
−1 and 1, providing a stronger gradient which causes learning to become more
efficient.

We notice that although tanh is preferred over sigmoid, it does not result in an
output resembling a probability distribution i.e., the output is not limited between
the range of 0 and 1. For classification problems with CE loss, tanh cannot be used
as an activation function for the final layer. For binary classification, the sigmoid
function generates values within the expected range. Extending the objective to
multi-class classification, we replace the sigmoid with a softmax function. Softmax
is defined as:

softmax(x)j =
exj∑K
k=1 e

xk
(2.10)

Where j symbolizes the index of the unit for which the probability is computed
and K defines the total number of units in the softmax layer. Unlike the case with
sigmoid where we assume binary classes, we calculate the probability of all possible
classes independently and normalize each prediction with the total predictions
across the entire range of classes.

Another essential activation function known as the rectified linear unit
(ReLU) [73] is shown in figure 2.4. The ReLU mitigates all input values below
0 and simply return the input value when it exceeds 0. In recent years, ReLU be-
came the preferred activation function when adding more layers to neural networks
due to their low computational cost for one. We justify this preferential shift in
section 2.1.6.

Backpropagation

In neural networks, the weights need to be adjusted to minimize the loss. In
other words, the weights are set to a value which drives the function’s output
towards local minima. As noted in section 2.1, the activation function needs to
be differentiable as a prerequisite. The loss function must be differentiable as
well. The differentiability requirement is enforced for all neural networks using
gradient-based optimization methods.

We update the weights using the gradient descent algorithm. Gradient de-
scent is an iterative algorithm which progresses towards the direction of the steepest
descent. Since it is an iterative algorithm, a step size should be defined for each
iteration. The step size is known as the learning rate. Choosing a learning rate
that is too high would result in an overshoot, causing the descent algorithm to
miss a potentially good minimal point. On the contrary, setting the learning rate
to a minuscule value would result in a prohibitively slow learning process.

The gradient is calculated upon the loss function with respect to the weights
of the neural network. Suppose we design a neural network for performing linear
regression. We would choose the MSE (described in section 2.1.2) as our loss func-
tion. For simplicity, we assume a linear activation function instead of a sigmoid,
replacing ŷ in the MSE loss function with x ·wx +wb. To compute the gradient of
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2.1. Neural Networks

MSE with respect to the weights:

w′ =
∂E

∂w
= − 2

N

i=N∑
i=1

x(i) · (y(i) − ( ˆx(i) · w + b)) (2.11)

Where E is the MSE loss function, w represent the weights, b represents the bias,
x represents the input, and i denotes the sample for all N samples. Similarly, we
derive the MSE loss with respect to the bias:

b′ =
∂E

∂b
= − 2

N

i=N∑
i=1

(y(i) − ( ˆx(i) · w + b)) (2.12)

Once we have acquired the derivative of the weights and the bias, we can update
their values by:

w 7→ w − (w′ · η) (2.13) b 7→ b− (b′ · η) (2.14)

where η denotes the learning rate. It becomes clear that such an approach is
plausible assuming the network has a single layer. However, it is common to
have multiple layers to estimate complex functions, requiring an expansion on the
common gradient descent approach. To acquire the updated values for shallower
weights, the chain rule is applied on the weights in reverse order, starting from the
deepest layer (output layer) to the shallowest layer (first intermediate layer). We
update derivatives for each layer separately and multiply the derived functions up
until the layer for which we require the weights. Applying the chain rule in reverse
order for updating the weights is known as backpropagation.

Training and initialization

Gradient descent is an algorithm used for minimizing the loss by driving the param-
eters towards optimal values. We demonstrated how gradient descent optimizes the
parameters, however, we notice that the weights are only updated after all samples
have been observed. Iterating through all the training samples is described as an
epoch of time. In other words, an epoch is the total number of iterations required
to traverse once through the entire training dataset.

Updating the weights after an entire epoch is known as batch gradient de-
scent. The gradient descent is relatively smooth and should not fluctuate very
often. However, such a method does not provide us with feedback on how well the
network is performing until the loss for all samples has been computed. Another
issue arises from the large memory consumption associated with such an approach.
In theory, we can duplicate neural networks for the total number of samples in our
dataset, perform the forward pass and compute the loss. Since the samples are
assumed to be independent, no sequence should be obeyed, hence all computa-
tions can be done in parallel. This is considered time efficient but requires a large
memory size. A group of samples processed in parallel are described as a batch.
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Chapter 2. Background Theory

Defining a batch size that is significantly smaller than the total number of training
samples allows for a compromise between memory and time.

Updating the weights after a single batch is known as mini-batch gradient
descent. Averaging more samples at once should reduce the noise and stabilize
the gradient descent, however, when many samples are averaged at once (as the
case with batch gradient descent), the gradient descent becomes very stable, risk-
ing a potentially suboptimal local minima [58, s.4.1]. On the other end of the
spectrum, another method described as stochastic gradient descent (SGD) up-
dates the weights after every sample. SGD is much faster than batch gradient
descent depending on the size of the training dataset. Unless we are training on a
large dataset (speed is an essential factor as well), SGD would be considered too
noisy, since each sample influences the gradient’s direction.

Mini-batch gradient descent offers greater flexibility to train the network based
on our preferences and the resources available in comparison with batch and
stochastic gradient descent. However, choosing a suitable batch size is rather
challenging. It is important to shuffle the data in our training dataset to avoid any
bias, especially when the dataset is ordered based on some criteria. This implies
that unrelated samples are batched together, indicating that the features observed
differ significantly. Frequently occurring features are therefore more likely to have
a greater influence on the gradient, causing samples with less frequent features
to have a smaller impact on the gradient. Increasing the number of samples in a
single batch should mitigate this issue.

The learning rate has a significant impact on the convergence of the model.
Introducing learning rate schedules [89] allows the learning rate to change during
the learning phase. Although such dynamic approaches offer a remedy for falling
into sub-optimal local minima, they are limited by the properties which have to be
predefined, presenting yet another optimization challenge. As argued by Dauphin
et al. [16], difficulty in convergence arrives mainly from saddle points instead of
local minima. Saddle points are plateaus surrounded by a similar error in both
directions, making it impossible for SGD to escape a sub-optimal point without
modifications to the optimizer algorithm. Gradient based methods cannot distin-
guish between a local minimum and a saddle point. Ge et al. [28] introduced noise
at each descent step, showing that gradient descent can escape saddle points in
polynomial time.

The weights of the neural network need to have an initial value. The choice of
the weights is critical and can have a major influence on the learning procedure.
The bias weights are commonly set to 0 initially. The weights for hidden and input
units, however, cannot be set to zero, since any projection on the weight vector
would result in a 0 value and therefore the gradient would never change. Setting
the weights to high values initially would slow down the learning process, increasing
the learning time by folds. Another critical issue would arise from setting all the
weights to an identical value initially. Considering that all the weights are the same,
the gradient for those weights would be identical, making most units redundant. A
simple alternative is to initialize the weights from a standard normal distribution.

The choice of weight initialization is heavily dependant on the activation func-
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tion as well. For layers with a ReLU activation, He et al. [40] proposed a scaling
factor 2√

fanin
multiplied with the randomly initialized values. fanin refers to the

number of units in the layer preceding the one for which the weights are initialized.
The random variables could be sampled either from a normal or uniform distribu-
tion. A similar initialization factor 1√

fanin
was proposed by Glorot et al. [31] for

initializing either sigmoid or tanh activated layer weights.

Optimizers

Ravines [99] present a non-trivial challenge for optimizing a neural network, espe-
cially when using SGD. Ravines are defined as areas where the search space curves
are steeper in one direction than the other. This causes SGD to oscillate frequently
between the two directions, slowing down the learning process. Momentum [85]
introduces a damping factor which minimizes the oscillation. The damping factor
relies on previous timesteps, introducing a fraction from past weights:

w 7→ (γ · w)− (w′ · η) (2.15)

where γ represents the momentum term (fraction from the previous timestep).
As the weight update gains greater momentum, it progresses faster towards the
steepest slope. This approach does not integrate past knowledge into its progress,
namely, it continues to accelerate towards steeper points even when a sudden
change in the gradient occurs. Nesterov accelerated gradient [76] is a method
which takes past steps into consideration. Nesterov subtracts the momentum from
the gradient term of the previous timestep, allowing it to update the weights based
on an approximation of the future timesteps instead of only considering the current
timestep.

Both the momentum as well as Nesterov momentum can be used alongside
the SGD optimizer. Other optimizers consider more elegant approaches than pure
momentum. One such algorithm is known as the Adaptive Moment Estimation
(Adam) [52] optimizer. Adam introduces an adaptive decay to the learning rate.
Decay refers to a factor multiplied by the learning rate at each timestep. Adam
computes the mean (the first moment) as well as the variance (the second moment)
of previous predictions, multiplying them with decay factors β1 and β2 respectively.
The two metrics are computed as such:

m 7→ (β1 ·m) + (1− β1) · w′

1− β1
(2.16) v 7→ (β2 · v) + (1− β2) · (w′)2

1− β2
(2.17)

where m represents the mean and v represents the variance. The constants β1
and β2 adjust the decay of the mean and the variance. Since the mean and vari-
ance are initially set to 0, they are biased towards zero. To counteract the bias, a
divisor of 1− β is introduced to each term. The weights are finally updated by:

w 7→ w − η√
v + ε

+m (2.18)
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where ε is a smoothing term to avoid division-by-zero errors. Although Adam
generally outperforms SGD, it fails to generalize as well when the number of train-
ing iterations increases [51]. The authors address the problem by proposing an
algorithm which switches between Adam and SGD based on the training steps.
Choosing the best optimizer is task dependent, and to our knowledge, it still ap-
pears to be an open research problem, since different optimizers have shown success
in various applications.

2.1.3 Regularization
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Figure 2.5: Three function fitness modes

As the number of trainable parameters increases and the size of input data
decreases, the network is more prone to overfitting. Overfitting refers to the
model approximating a function that closely resembles the training data as shown
in figure 2.5(c), causing a large variance in the decision boundaries. This may
cause the data which was not observed during training to be misclassified.

Many techniques have been introduced for regularizing neural networks. One
common method is known as data augmentation. Data augmentation refers
to adding more samples to the training dataset (described in section 2.1.4) by
introducing random noise to the data. Examples of noise applied on images, involve
the introduction of random translations, rotations, scales, skewness etc. Such
approaches create a larger training dataset and allow the model to overcome noise.
Increasing the noise to an extreme results in what is known as underfitting as
shown in figure 2.5(a), hence it is necessary to adjust the parameters of different
noising techniques depending on the problem at hand.

Dropout [97] is another effective technique commonly used in neural archi-
tectures to prevent overfitting. Dropout randomly drops connections (sets their
weights to 0) during each training iteration, based on a dropout probability de-
fined beforehand. During inference, however, dropout no longer drops connections.
As a result, inference cannot be performed without a simple modification. Since
the model uses the full spectrum of connections during inference, the scales of the
outputs are larger by a factor equivalent to the dropout probability in compari-
son with the training output. Hence, when applying dropout during training, the
outputs of the inference model should be adjusted accordingly.
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Dropout can operate well alongside other regularization techniques in the same
network. Layer Normalization [4] is one such technique. Layer normalization is
a method which normalizes the input features in a batch based on two learned
parameters integrated as part of a hidden layer. The parameters are the mean and
the variance, which iteratively scale the layer features within any given batch.

Other approaches for regularizing neural networks include external approaches,
which do not modify the data, nor do they influence the neural model. A common
technique known as early stopping interrupts the learning process based on the
validation loss. When the training loss decreases and the validation loss begins to
rise, this indicates that the model is on the verge of overfitting. Early stopping is
parametrized by what is known as patience. If the trend of inverse proportionality
between the two losses continues for a preset number of iteration (patience), the
neural network is halted. This prevents networks from resuming learning as they
overfit, and stop at a point where the network generalizes best.

2.1.4 Training, testing and validation

For training a neural network model on data, the examples are usually separated
into three sets. The main data set which is usually the largest, known as the
training dataset is used for the training the model. The parameters of the model
are fitted against the training dataset; however, overfitting as described in section
2.1.3 becomes more likely to occur, if we were to measure the performance of the
neural network based on the training examples. To remedy this issue, the overall
dataset is split between training examples and validation examples. The validation
examples are fewer than the training examples, and their loss is measured against
the parameters which were trained with the training set. After training for a
single epoch, the validation examples output is predicted. The validation dataset
serves two purposes: (1) It can be used as a regularization enforcement technique,
and (2) Provides an unbiased approach for evaluating the hyperparameters where
the network properties could be modified as desired while ensuring the validation
dataset remains the same throughout the evaluation. Another dataset which is
usually split from the overall dataset is known as the test dataset. The test dataset
is independent of the training and validation dataset but has a similar distribution
to both. The test set is usually as large as the validation set and serves the
purpose of ensuring the generalization of the model. After training and validating
the hyperparameters, the model with the trained weights is used for inference on
the test dataset. Based on the evaluation metric (section 2.1.5), we can decide
if the model was able to generalize correctly according to how well it recognizes
unseen examples from the test dataset.

There are several techniques for validating the performance of a network given
preset hyperparameters [53]. Selecting the hyperparameters in the first place re-
quires an informed decision. We can manually choose a set of values for each of
these hyperparameters and alternate these values until all combinations of hyper-
parameters are covered. This approach is known as grid search. As the number
of hyperparameters grows along with their potential values, the plausible combi-
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nations increase exponentially making grid search prohibitive. We could instead
randomly generate hyperparameter values, limiting them to a certain range. Ran-
dom approaches have a clear advantage over grid search when the search space
grows significantly; however, they do not incorporate prior knowledge in select-
ing possible values. Bayesian optimization [72, p.1-3] approaches for such as
Parzen tree estimators [9] have been proposed for hyperparameter optimization.
Such Probabilistic approaches build a probability model of the observations (previ-
ous experiments) and update the posterior function defining the hyperparameters
based upon the prior function, with the objective of minimizing the loss of the
network.

2.1.5 Evaluation metrics

To evaluate the performance of a neural network, we would require a metric against
which we could compare the outcomes. The evaluation should be performed on
the testing dataset. Measuring the same metrics on the training and validation
datasets informs us about the generalization of a model. In other words, if the
training metric value improves while the validation metric value degrades, this
would indicate that the neural network is overfitting. For evaluating the per-
formance on realistic examples, we would need to compare the results based on a
metric which fits the task at hand. The simplest metric would be the accuracy of
the prediction with respect to the ground truth. The accuracy represents how often
the prediction and the ground truth match for all the testing examples. This ap-
proach, however, fails to represent the power of a test, where biases in the dataset
could skew our perception of the outcome. To avoid this problem, we take the
precision and recall into consideration. The precision measures the proportion
of relevant examples given the prediction while the recall measures the ability to
match relevant instances in the dataset. Precision is defined as:

Precision =
TP

TP + FP
(2.19)

where TP represents the number of True positive examples, meaning the exam-
ples that were predicted to belong to a class and the ground truth matched that
prediction. FP represents the number of False positive examples, those which
were predicted to belong to that class but the ground truth did not match the
prediction. The recall is defined as:

Recall =
TP

TP + FN
(2.20)

where FN represents the number of False negative examples, indicating the
examples which were predicted to belong to another class, however, the prediction
did not match the ground truth. The F1 score measures the harmonic mean of
the precision and the recall and is defined as:

F1 = 2 · precision · recall
precision+ recall

(2.21)
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The F1 score offers a good compromise between the two measures, yet either of
them might be of greater significance to the task at hand.

Visual object detection

Object detection in neural computer vision architectures addresses the classifica-
tion of objects and localizing them in an image. The localization takes place by
creating quadrilateral shapes enveloping the objects of interest. The quadrilateral
shapes are represented as four-point coordinates and are called bounding boxes.
Evaluating object detection requires a measure that encompasses the fitness of both
the bounding box regression and object classification. One such metric known as
the mean Average Precission (mAP) [23, p.313] addresses this problem specif-
ically.

The mAP is the mean of average precisions at various recalls. The mAP em-
ploys the Jaccard index [37] which is also known as the Intersection over Union
(IoU) to measure the overlap between bounding boxes. The IoU computes the area
of intersecting bounding boxes over the total area covered by them. The mAP as-
signs the counts of the true positive, false positive, and false negative occurrences
necessary for computing the precision and the recall. This assignment is based
on the IoU between the prediction and the ground truth, considering that the IoU
exceeds a predefined threshold. A precision versus recall construct for all the exam-
ples (objects detected) is created, and the precision values are adjusted to match
the highest precision value to follow. The adjustment is performed by ordering
the precisions according to their corresponding recalls. The mean of the adjusted
precisions is computed over all examples resulting in the mAP. It is common to
observe the losses of the classification (object class) and regression (bounding box
location) outputs as an indicator of the model’s improvement. However, the mAP
remains to be a more robust measure which combines the evaluation of the two
tasks at hand, while enhancing the interpretability of the model’s performance.

Language translation

Measuring the validity of a translation is based upon the types of languages used
and the objective of the evaluation. For models having cross-entropy as a loss,
using that error to asses the translation would give a good indicator of how well
performed. When translating natural languages to other natural languages, it is
common to use metrics such as the BLEU score [79], since a correct translation
could have different alternatives which are equally as correct. For translating be-
tween natural languages and non-natural languages, there are no standard metrics
defined since the evaluation should be completely dependant on the task at hand.
The cross-entropy, however, is more general by definition, since it quantifies the
difference between the probability distributions of the prediction and the ground-
truth, therefore, can be used for evaluating such translations.
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2.1.6 Deep neural networks

Modern neural networks with several layers are described as deep neural net-
works. Although multi-layer perceptrons have existed since the year 1988 [91],
common problems such as low computational resources, the curse of dimension-
ality [33, p.155], vanishing gradients [42] and exploding gradients [81], and the
degradation problem [40] have hindered the development and research in MLP.
With the resurrection of deep learning, the aforementioned issues were gradually
mitigated.

With gradient-based learning approaches, such as backpropagation, the chain-
ing of multiple numerical functions ought to diverge or converge at some point.
Since the product of two or more small numbers (less than 1) would result in an
even smaller number (less than at least one of the two values), we would expect the
gradients to reach a value approaching 0. As we increase the number of layers and
iterate through the various examples presented to the neural networks, we begin to
observe the vanishing of those gradients. Careful initialization of the weights (re-
fer to section 2.1.2) and correctly normalizing the data [98] as well as the weights
and activation outputs of the network [4, 44] should reduce the prominence of
the problem. Vanishing gradients are still significant, depending on the activation
function. The sigmoid activation function is limited at the two extremes, making
them more prone to gradients vanishing. On the other hand, a ReLU activation
function saturates in a single direction [32], making it more robust to vanishing
gradients. Using ReLU comes with its disadvantages such as the dying ReLU [102]
problem and exploding gradients, yet they appear to be most suited for deep neu-
ral networks. To combat exploding gradients, we can also introduce a gradient
clipping [33, p.409-411] threshold to the activation function.

The degradation problem refers to the neural network’s inability to learn com-
plex features as more layers are added. This observation was rather counter-
intuitive since more layers implied an increase in the number of parameters, which
indicates that the network has more degrees of freedom to fit varying non-linear
functions. It was discovered that the addition of residual connections between
the layers reduced the significance of the degradation problem. Residual connec-
tions are skip connections between two layers with a small number (relative to
the depth of the network) of linear and non-linear layers in between. The output
of the shallower layer is added to the deeper layer, making the learning objective
easier for the network: learn the identity function, diverting the goal from learning
f(x) = x to f(x) = 0. This simple yet highly useful approach inspired the common
practice of introducing residual connections in deep neural networks.

2.1.7 Convolutional neural networks

Computer vision neural networks require a design which differs from the conven-
tional densely connected (fully-connected) architecture. A medium sized image,
e.g., 640 × 480 pixels in width and height with 3 color channels, would result in
about one million weight connects per single hidden unit. This requires immense
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Figure 2.6: Convolution of a predefined kernel of size 3 × 3 with a 7 × 7 pixels
monochrome image and a stride of 1×1 without padding. This results in an output
of size 5× 5
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computational power and resources, with diminishing abilities to learn meaning-
ful features in images. Due to the sparsity of significant features that would lead
to correct classification or regression (e.g., Not all objects and features in an im-
age need to be detected), dense feed-forward networks soon become infeasible. A
common alternative is known as convolutional neural networks. These networks
contain layers which do not traverse through all the units from a previous layer;
instead, they have a predetermined size which governs their coverage.

Fully-connected deep neural networks are usually not well suited for images, due
to their inability to take translation invariance [56] into account. Translation
invariance refers to recognizing features within the image regardless of the location,
e.g., an object of interest located in the corner of an image should be detected even
when the training dataset only contained images with that same object located in
the center of the image. Convolutional neural networks are known to be translation
invariant mainly due to their incorporation of pooling. Pooling refers to the
minimization of the features by disregarding or merging convolved features in a
proximate locality (convolved features close to each other). Some common pooling
methods include maximum pooling [111] where only the maximum of multiple
convolved features is taken into account and average pooling where the average
value of multiple convolved features is propagated to the following layer.

Convolutional layers are composed of multiple weighted layers called kernels,
which are also known as filters. Kernels are limited in size, and depending on the
dimension of the convolutional layer, we can specify the receptive field of those
kernels overall dimensions. Multiple kernels could be introduced per layer creating
several kernels. Each kernel is expected to learn a different set of features. Con-
volution as a mathematical operator expects a mechanism for sliding two signals
against each other. We define a discrete step size which controls the shift in the
sliding progression. In the context of convolutional neural networks, the step is
known as a stride. As shown in figure 2.6, we can observe a simplified example
of how a single kernel is convolved with an image. It is clear that the corners of
the image are contained in fewer convolution operations. By creating a padding
around the image, we can allow the convolution to occur for all units for an equal
number of times. Zero padding is commonly used, whereby all units extending
beyond the receptive field are set to 0.

To calculate the size of the convolved features output for a single kernel, we
use the following formula:

doutput =
dinput − dkernel + 2 · dpadding

dstride
+ 1 (2.22)

where doutput is the size of the output, dinput is the size of the input layer, dkernel
refers to the kernel size, dpadding referes to the padding size, and dstride refers to the
number of strides in each dimension. Referring to the two-dimensional convolution
example in figure 2.6, we calculate the height of the output by:

doutput =
7− 3 + 2 · 0

1
+ 1 = 5 (2.23)
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2.1. Neural Networks

resulting in 5 which matches the number of feature identifiers for the convolved
features. The width of the output is identical to its height.

2.1.8 Attention

Until recently, recurrent and feed-forward variants of encoder-decoder neural net-
works [71, 103] relied on the entire spectrum of data within a training sample to
learn approximating a function. The massive influx of information is rather dis-
tracting and could lead to sub-par ability to identify new information correctly.
Instead, we tend to focus on certain aspects that appear to be critical or of greater
importance in-order to optimally perform a task. An analogous mechanism re-
sembling the human understanding of attention arises in the context of artificial
neural networks.

Neural attention equips networks with the ability to attend to specific features,
giving more weight to parts or units which contribute more to the achievement
of the desired output. The simplest form in which attention could be achieved
is the element-wise multiplication of a mask with the input vector. The mask is
generally learned as part of the network parameters. Attention can be categorized
into hard attention [3] and soft attention [5]. Hard attention constraints the
values of the mask to a value of either 0 or 1. Soft attention, on the other hand,
offers a more flexible limitation where the mask is constructed with values in the
range of 0 and 1. Soft attention, therefore, assumes a mask which represents a
probability distribution. A common approach for generating soft attention vectors
is through applying a softmax to the attention mask.

Soft attention has gained more prominence in recent years due to the fact that
their masks are differentiable, avoiding complex approaches such as variance re-
duction [71] as the case with hard attention. Luong et al. [65] propose an approach
which combines global attention (soft attention) and local attention (hard atten-
tion) while maintaining the differentiability of the layers. Global attention is a
term used to describe approaches which attend to the entire hidden layer. Lo-
cal attention refers to attention constrained to a discrete position. By centering
a subset of the global attention units around the local attention position, better
performance was observed for a machine translation task [65]. Self-attention is
another soft attention approach, shown to improve results for language modeling
tasks [15] and visual attention tasks [106]. The idea of self-attention was developed
for language modeling tasks, where different positions in a sequence are considered
for computing a representation relating parts of the sequence to itself.

Different attention mechanisms were developed for visual tasks and language
tasks including scaled dot-product attention [65], additive attention [5], and
content-based attention [35] to name a few. Such approaches have given rise to the
integration of attention with various neural architectures due to their continued
success.
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Figure 2.7: The two variants of the Word2vec model

2.1.9 Encoding

To present data samples to a neural network, they should be represented numeri-
cally. Every sample point should be indicated by a floating point or a real-valued
number. For classification problems, the class of each example should be indicated
by a unique scalar or vector which symbolizes a reference to the actual class.

Sparse encoding refers to a vector which is mostly represented by zeros,
except for a few components. One of the simplest and most common sparse rep-
resentations is known as one-hot encoding. A One-hot vector has a number of
components equivalent to the total number of classes. All components of the vec-
tor are set to 0, except for the class represented by the example, which has a 1
valued component at the index indicated by the class. Suppose we have a dataset
with only three classes: red, blue, green; The one-hot vector would have three
components, where {1, 0, 0} represents the red class, {0, 1, 0} represents the blue

class, and {0, 0, 1} represents the green class.

A few categorical classes can be represented as one-hot encoded vectors; how-
ever, language models with vocabularies exceeding thousands of words would suffer
greatly from such a representation. Consider as well that natural language related
task rarely deal with single words or phrases, indicating that multiple words are
represented to a neural network as thousands of units, causing the network to scale
intractably. Dense encoding presents a more feasible alternative. Such encoding
does not limit each vector component to a binary value of 0 or 1, nor does it restrict
the vector to be sparse (a single active component). Assigning a unique vector for
each word can be done by any random initialization technique. We specify the
number of components in the vector and generate a unique vector for each word
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type in the vocabulary.
Randomly sampling vectors to represent words is usually suitable for language-

related tasks; however, the vectors do not represent any relation to the semantics of
a given word. Mikolov et al. [66] introduced an approach for creating word vectors
based on the likelihood of their co-occurrence in a given corpus. The approach was
titled Word2vec. Words of similar meaning tend to frequently co-occur in similar
contexts as per the distributional hypothesis [39]. The authors of Word2vec exploit
the distributional hypothesis and the fact that neural language models outperform
conventional their N-gram counterparts [95, 67].

Word2vec is constructed as a neural network with a single hidden layer. The
hidden layer has a linear activation function (summation), with a softmax applied
to the output layer. The authors introduce two variants of the Word2vec model as
shown in figure 2.7. The continuous bag of words (CBOW) variant traverses
through the entire corpus, considering the context window, which is described as
N number of words preceding and following each word as input to the neural
network, with the word at the current iteration as the ground truth class at the
output. The skip-gram variant reverses the inputs and outputs, having the word
at the current iteration as input and the preceding as well as the following words
as output. The words are fed to the network as one-hot coded vectors, where the
size of each vector is identical to the size of the vocabulary. All components are
represented as 0 except for the indices where the preceding and following words
occur in the vocabulary. The index positions in the vector representing the words
in a given sample are replaced with 1.

The objective of the network is to maximize the probability of observing the
output word or words conditioned on the context word or words. This can be
achieved by measuring the cross-entropy (described in section 2.1.2) between the
ground truth and the softmax output, applied as the loss function for the neural
network. After training the network for several epochs, the weight matrix for the
connections between the inputs and the hidden layer is stored in a dictionary. The
indices represent the words in the vocabulary and the vectors for each index in
the matrix is used to represent the word encodings. The vectors are referred to as
embeddings which are later used for encoding words trained on different neural
networks.

The Word2vec authors address various problems which could result from train-
ing the neural network on large corpora [68]. The authors introduce a technique for
pairing consecutively co-occurring words to form phrases. They justify their ap-
proach by presenting examples where two or more words occurring consecutively
could have a different meaning than each word observed independently. Infre-
quently occurring words below a certain threshold were eliminated from the train-
ing corpus as well. Greater improvement was observed by sub-sampling words, a
technique by which most frequent words have a higher probability of being dis-
carded from the training set. A technique described as negative sampling was
also introduced as a modification to the training phase so as to reduce the training
time significantly. During the backward pass, all weights of the network are usually
updated. This proved slow and inefficient; hence the authors resorted to randomly
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selecting a limited number of “negative” samples for which the optimization takes
place. Negative samples refer to the words which did not contribute to the example
of the current iteration.

Word2vec embeddings showed improvement over random encoding approach-
ing [83]; however, Word2vec was recently disregarded for more complex latent
approaches which considered the context of the word for representing its embed-
ding [82, 17]. Although such approaches have shown significant improvement,
Word2vec still provides a simple alternative, which requires minimal modifications
to the targeted neural networks for integrating the words as learned embeddings.

2.1.10 RetinaNet: object detection and localization

RetinaNet [62] is a single stage (detector) deep neural network model for detecting
and classifying objects in images. It has been shown to outperform other single
stage [87, 64, 27] and multiple stage detectors [30, 88, 61]. The RetinaNet achieved
an average precision of 37.8% on the challenging COCO [63] dataset.

The RetinaNet learns to predict bounds on objects. These bounds are in the
form of quadrilateral shapes, which surround an object and are defined for each
image from the training set. Learning different bounding boxes of all shapes and
sizes would not be possible. Hence anchor boxes are employed instead. Anchor
boxes are predefined shapes that cover a region of a given size. By limiting the
number of possible outcomes, the learning becomes feasible.

The RetinaNet is composed of a deep residual network [41] called a ResNet,
forming the backbone of the RetinaNet, which is connected at multiple stages to
what the authors describe as Feature Pyramid Network (FPN) [103]. The FPN
splits into two subnetworks, from which the detection output is extracted.

Feature pyramid network

A Region Proposal Network (RPN) [88] splits into two heads: specifically a regres-
sion head which predicts a shape for the anchor boxes in a given region, and the
classification heads which predict the class for a given object. RPN form pyramids
of anchor box shapes in the form of convolutional layers of different sizes on each
region. These pyramids form a pyramid network. The RetinaNet adopts a similar
approach to that employed by RPN with the exception that the outputs from a
backbone network, such as the ResNet are discarded, and their hidden layers are
combined.

The FPN uses the ResNet as its backbone model. In table 2.4, we summarize
the architecture of three ResNet variants. Residual connections are found between
all sublayers within each layer, e.g., The ResNet 50 has 3 residual connections for
the conv2 x layer.

The Backbone architecture is segmented into five sections, each concerned with
recognizing certain features in images. The first layers (shallow layers) in the
backbone must represent low-level features such as edges and splines. Deeper into
the layers, higher-level features are represented in the form of shapes and abstract
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Table 2.4: The different ResNet variants constructed using convolutional layers,
skip-connections and a final feed-forward layer

Layers ResNet 50 ResNet 101 ResNet 152

conv1

112× 112


7× 7, 64

stride 2

7× 7, 64

poolmax, stride 2




7× 7, 64

stride 2

7× 7, 64

poolmax, stride 2




7× 7, 64

stride 2

7× 7, 64

poolmax, stride 2



conv2 x

56× 56

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

 1× 1, 64

3× 3, 64

1× 1, 256

× 3

conv3 x

28× 28

1× 1, 128

3× 3, 128

1× 1, 512

× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 4

1× 1, 128

3× 3, 128

1× 1, 512

× 8

conv4 x

14× 14

 1× 1, 256

3× 3, 256

1× 1, 1024

× 6

 1× 1, 256

3× 3, 256

1× 1, 1024

× 23

 1× 1, 256

3× 3, 256

1× 1, 1024

× 36

conv5 x

7× 7

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

 1× 1, 512

3× 3, 512

1× 1, 2048

× 3

fc final

1× 1

 poolavg

1000

softmax


 poolavg

1000

softmax


 poolavg

1000

softmax
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visual constructs. Features represented in each layer are summed and combined
hierarchically combined to form the FPN. The FPN is constructed with Pl layers,
ranging from P3 through P7, where l indicates the pyramid level. The subscript
l indicates the level and results in a resolution of 2l less than the input image.
An image with a resolution of 640 × 480 would therefore have a P3 level with a
resolution of 80× 60.

Layers P3 through P5 are constructed using conv3x through conv5x from table
2.4 with top-down lateral connections between them. P6 is a 3 × 3 convolutional
layer with a stride of 2 connected to conv5x. P7 is computed by applying a ReLU
activation, followed by a 3× 3 convolutional layer with a stride of 2 connected to
P6.

The regression and classification heads extend from subnetworks connected to
the FPN at multiple stages. The regression and classification subnetwork param-
eters are untied to one another but are very similar in shape. Each subnetwork
is composed of four convolutional layers. The regression output regresses over the
bounding box positions, whereas the classification head identifies the class of the
object detected. The model could generate multiple bounding boxes, pointing to a
single object. To avoid excessive bounding box generation, the overlapping boxes
are suppressed using non-maximum suppression [24].

Focal loss

The RetinaNet introduces a novel loss known as the Focal Loss [62] which manip-
ulates the cross-entropy loss in such a way that it emphasizes samples which were
incorrectly classified. The cross-entropy loss is defined as:

CE(px) = −log(px) (2.24)

here, px signifies the probability of the ground truth class. This definition does
not address the imbalance between foreground-background classes, making classes
which are difficult to classify even less likely to be predicted correctly. The authors
introduced the Focal loss defined as:

FL(px) = −α(1− px)γlog(px) (2.25)

where γ is a tunable focusing parameter loss and α ∈ [0, 1] is a weighting factor,
resulting in a balanced variant of the Focal loss.

2.1.11 Transformer: language modelling and machine
translation

The Transformer [103] is a neural translation model which estimates the distribu-
tion of a target sequence given a source sequence. The Transformer focuses on the
replacement of recurrent neural networks with an encoder-decoder architecture.
Recurrent neural networks have a path complexity of t, where t signifies the num-
ber of timesteps. This hinders the parallelization of the computation due to the
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sequential nature of such models. The core functionality of the Transformer relies
on the idea of attention described in section 2.1.8, whereby the network learns
to ’attend’ to certain parts of the input, maintaining focus on regions of interest.
The Transformer achieved BLEU [79] scores of 0.264 and 0.284 on the WMT New-
sTest English-to-German translation dataset for the years 2013 [36] and 2014 [75]
development sets respectively.

A machine translation model predicts the next words in a sequence conditioned
on the probability of the previous words from the target language sequence as
well as the source language sequence. The probability indicates the likelihood of
predicting a target string given a source string.

P (t|s) =
C∏
i=0

P (ti|t<i, s) (2.26)

where t is the target and s is the source. Index i indicates the token’s position in
the target sequence. C is the total number of tokens in a target sequence.
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Figure 2.8: Multi-head attention of the Transformer network

The Transformer is constructed using a combination of multi-head self-attention
and position-wise feed-forward networks [103], each followed by a layer normaliza-
tion [4]. The Transformer applies what is known as self-attention [5] in the form
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of dot product attention [65] instead of additive attention [5]. The authors modify
the dot product attention by scaling it given a scaling factor of 1√

dk
. dk represents

the dimension of the layer input. The resulting attention is formulated as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.27)

where Q is the query projection. K and V are the keys and value projections
respectively. Within the multi-head attention block shown in figure 2.8, a linear
transformation is applied to Q,K, and V . Scaled dot product attention is applied
to the resulting matrices. Finally, the outputs are concatenated, and another linear
transformation is applied to the concatenated output. A residual [41] connection
extends from the layers before the multi-head attention block and its output. Layer
normalization is then applied to the added residue.

Positional encoding

The normalized residual layer is connected to a feed-forward layer block which is
composed of two ReLu activated layers. With the lack of recurrence, the model is
oblivious to positional information. This lack is compensated by the introduction
of positional encoding [103], which translates word positions to sine and cosine
functions with different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)
(2.28)

where pos is the position of the word or character within the sequence, i is the di-
mension of the input, and dmodel is the embedding size. The wavelength progresses
linearly from 2π to 20000π allowing the model to learn a relationship between the
word positions regardless of the sequence’s length. The encoder and decoder are
duplicated N times, and the decoder output is passed through a linearly activated
layer, connected to a softmax layer, which computes the output probabilities.

2.1.12 Multi-task learning

In deep learning and machine learning in general, we aim to learn a specific task.
We optimize our models to understand patterns and achieve an objective, mini-
mizing the loss and improving the model’s overall performance. By focusing on a
specific task, the model might lack the ability to extract features which could other-
wise be beneficial. Expanding the range of tasks for a model has shown to improve
the model’s ability to generalize more accurately upon the essential task at hand
as well as the auxiliary tasks introduced [13]. Auxiliary tasks could be crucial
to the final objective [88, 103] or integrated as a form of regularization [94, 1].

From a biologically motivated perspective, we learn to perform tasks by inte-
grating prior knowledge acquired through performing other tasks. Not only do we
achieve one objective, but we also tend to understand and analyze our sensory
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Figure 2.9: Multi-task learning architecture

input, as the case with vision: we observe our surrounding and accumulate knowl-
edge pertaining to different domains like recognizing objects, their colors, their
size and proximity to us. From a technical point-of-view, multi-task learning can
be justified as a method which introduces biases to the model. Although bias is
generally an undesired outcome of learning, in concert, these biases might as well
assist our models in generalizing, e.g., an orange fruit is likely to also be orange in
color

Regularization techniques introduce intrinsic and extrinsic knowledge to our
learning models [104] and could be categorized as multi-task approaches. Multi-
task learning approaches encompass multi-output neural architectures as well. A
single task could potentially overfit to specific patterns; however, introducing more
tasks could lead to an averaging of the noise across different tasks making the
model more robust to irregularities and noise. In figure 2.9, we show the typical
architecture of a multi-task neural network with hard parameter sharing. This
indicates that in the lower layers, the parameters are shared across the task. Each
task has a number of separate layers with dedicated parameters which are not
shared across task. Eventually, the output of the neural network is represented by
the tasks to be learned individually.

The tasks could have different objectives with different loss functions. The
overall loss is a weighted summation of the losses across the tasks. The losses
are weighted due to the different scales of each task output and the nature of
their loss functions. Without weighing the contribution of each loss, a certain
task might have an overwhelming effect on the overall loss rendering other aux-
iliary tasks redundant. Defining the loss weights could be done through manual
tuning [54] or using more sophisticated approaches exploring homoscedastic un-
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certainty [48] to adaptively adjust the weights according to the task-dependant
uncertainty. Another non-trivial problem arises from the different losses intro-
duced to a single neural network is known as destructive interference [110].
Destructive interference refers to tasks driving the gradients in opposing directions
during backpropagation as the weights are adjusted for the layers shared across
all the tasks. Zhao et al. [110] propose a modulation module which applies task-
specific masks to layers within the network. The masks reduce the gradient angles
across tasks internally since they are integrated as learnable parameters within the
layer, mitigating destructive interference.

Best approaches in multi-task learning are still open to research. Although
many approaches have been proposed to overcome common problems in multi-
task learning, such approaches remain task-dependant. Eventually, tuning the
tasks and integrating multiple models correctly should, in theory, improve the
neural network’s performance and enable learning features at a large scale [46].

2.1.13 Multimodal learning

Shared Layer

Shared Layer

Task Layer Task Layer Task Layer

Task Layer Task Layer Task Layer

Input A Input B Input C

Output

Figure 2.10: Intermediate fusion in multimodal learning architectures

Experiencing the physical world requires us to integrate a myriad of infor-
mation, upon which we base our actions and decisions. Robots and computers
have sensors which allow them to communicate with the outside world, enabling
them to receive the sensory-input as digitized data, encoded to deliver meaningful
information about the machine’s surrounding. Images, audio, and text are ex-
amples of sensory-input data which can be fed into such machines. On receiving
the input data, the system extracts features of interest and responds accordingly.
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Responding to the data received from one input at a time might not be sufficient
to perform a specific task. Combining sensory-input from multiple modalities is
known as multimodal integration.

One of the key features for multimodal systems is their complimentarity [55].
Complementarity implies that each modality introduces information that is essen-
tial and cannot be deduced without the modality’s integration within the mul-
timodal system. In order to create a multimodal system, the data has to be
combined. The process of combining the information from various modalities is
described as multimodal fusion [55]. Fusion in deep neural architectures can be
categorized into three broad groups: Early fusion [86] which is also described as
data-level fusion refers to the preprocessing of signals or the manual adjustment of
sensory data. For instance, either by decorrelating the multiple modalities, exploit-
ing correlations in high-level representations [78], or representing the fused data in
a common lower-dimension [105], the data could be combined and propagated to
the neural network. Late fusion refers to voting [7] or ensemble [112] methods
which weigh the contribution of each modality and decide accordingly. A majority
of the neural approaches for multimodal integration implement fusion within the
neural network, by combining the high-level representation of the data into a single
shared layer [50]. Such methods are described as intermediate fusion.

Figure 2.10 displays the structure of a multimodal network with intermediate
fusion. Each sensory input is processed by a task-specific layer, extracting the
lower level features associated with it. An intermediate layer merges (commonly
through concatenation) data arriving from multiple modalities into a common
representation, eventually learning a specific task which is influenced by the various
sensory inputs.

2.2 Robot Command Language

The Robot Command Language (RCL) [18] is a tree-structured language used for
instructing robots to perform tasks in the domain of object grasping. It is a sim-
plied representation of English language commands, one which translates directly
into spatial kinetic actions when processed by a robot with RCL support. The
lexicon of the annotations slightly differs from that of the command sequences as
shown in figure 2.11. RCL supports anaphora, cataphora, and indirect referencing.

The RCL structure was inspired by the semantic frame [25]. The leaf nodes of
the RCL tree align to words in the natural language sequence as shown in figure
2.11. The alignment feature allows an association between the commands and the
sentence, making it possible to relate the tokens in RCL to their corresponding
natural language tokens.

RCL combines a tag set which is universal [19] i.e. can be used for robot
commands in general, and domain-specific [19] i.e. designed specifically for the
block grasping task. In figure 2.11, a preterminal node (e.g., action) along with
its child (e.g., place) correspond to what Dukes [19] describes as a feature-value
pair. The features shown are specific to the simulated robotic domain, e.g., the
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Sequence

event

spatial-relation

entity

type

cube

color

red

relation

above

entity

type

prism

color

green

action

place

RCL annotation (Target sequence):

( event :
( a c t i on : move ( token : 1 ) )
( e n t i t y :

( c o l o r : green ( token : 2 ) ) ( type : prism ( token : 3 ) ) )
( d e s t i n a t i o n :

( s p a t i a l−r e l a t i o n :
( r e l a t i o n : above ( token : 4 6 ) )
( e n t i t y :

( c o l o r : red ( token : 7 ) ) ( type : cube ( token : 8 ) ) ) ) ) )

English command (Source sequence):

p lace green pyramid on top o f red br i ck

Figure 2.11: An RCL annotation and the equivalent English language command

action feature value represents moves for controlling the robotic arm, whereas the
type and color feature values branching from the first entity describe the object to
be grasped.

2.3 Augmented Reality

The process of superimposing three-dimensional computer-generated graphics on
a real image is best described as virtual augmentation. In order to realistically
place three-dimensional objects atop two-dimensional images, we need to know
their orientation, position, and size. To transform between the two domains, one
being the real view and the other being the virtual view, we need a reference that
can be described in each domain. The reference is represented in what is known
as the world frame, a common frame for positioning objects in both domains.
To augment virtual objects on real images, we need to compute the intrinsic and
extrinsic parameters of the camera which captures the real view. The intrinsic
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parameters describe the optical center of the image and the focal length of the
camera lens. The extrinsic parameters describe the position of the camera in the
world frame. We can acquire the intrinsic parameters of a camera by either defining
points on an image and their position in the real frame or calibrating it using a
known visual pattern [109]. A simple pattern such as a checkerboard can be used
to calibrate a camera. In order to successfully calibrate a camera, we would require
at least three images of the same board from different angles and distances.We can
assume that the camera is displaced in the real frame or that the checkerboard
itself is allocated. Under both conditions, the computation of the parameters does
not differ. The two assumptions which should be obeyed for this approach to
work are that the points on the checkerboard must be on the same plane and the
properties of the camera cannot be modified during the calibration. The camera
captures multiple images of the checkerboard, after which, the edges of the board’s
pattern are identified [38].

The camera matrix is acquired as a prerequisite for performing what is known
as pose estimation. Pose estimation deals with the projection of points from the
real frame to the image frame, in what is known as the Perspective-n-Point (PnP)
problem. Using methods such as random sample concensus [26], we can solve the
PnP problem by projecting three-dimensional points on to the two-dimensional
plane. By solving the PnP problem, we estimate the extrinsic parameters of the
camera creating a virtual view resembling the real view. By knowing these param-
eters we can superimpose computer generated objects upon real images.

2.4 Simulation

Conducting experiments on a physical robot is a time-consuming procedure and
rather inefficient for examining the effects of modifying the properties of a system.
Simulating the physical properties of a system allows for immediate feedback, de-
terministic outcomes, safe experimentation, and lower financial overhead. The
need for efficient and fast simulation gave rise to different approaches for simu-
lating realistic environment through recursive algorithms [93]. Such algorithms
aimed to achieve a smooth transition of multiple joints on a robotic system, yet
they mostly ignored the need for simulating contact dynamics.

Erez et al. [22] argue that even though methods for contact modeling such as
spring-damper methods [60] and impulse-based velocity-stepping methods [6, 70]
are found in many modern simulators, such approaches seem more plausible for
visualization and gaming tools rather than physically accurate simulation. A new
generation of simulators focuses on the usage of efficient recursive algorithms for
joint simulation and velocity-stepping methods for simulating contact dynamics.

One of the important features found in a majority of the robotic simulators, is
the ability to translate positions in the form of Cartesian coordinates to actuator
angles. Knowing an object’s position, a robot must be able to reach that position if
it’s dynamic structure allows it. The positions of such objects are known relative to
the robot’s position, and the goal is to find a plausible joint configuration to reach
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that point in space. This process is known as inverse kinematics. One method
for performing inverse kinematics is known as Newton’s method. Newton’s
method for inverse kinematics is composed of three main steps: (i) Finding the
configuration of the joint angles, (ii) Calculating the changes in the joint rotations,
and (iii) Computing the Jacobian matrix.

Initially, we need to transition from the robot’s current configuration to the
desired one. This can be represented as:

T = O + dO (2.29)

where T is the pose vector representing the target configuration for all the joints. O
represents the current joint configurations. Since the Newton method is a recursive
process, we update the configuration until the change is minuscule. dO is the
change in configuration and will be referred to as delta. To compute delta, we use
the following equation:

V = J × dO (2.30)

here, V represents the difference in spatial location i.e. the difference between the
target end-effector position and the current position, whereas J represents the
Jacobian matrix. The end-effector describes the final moving point of a robotic
arm, attached farthest from the base. To find dO, we invert the Jacobian:

dO = J−1 × V (2.31)

Since we are not guaranteed a solution after inverting the Jacobian matrix, we could
instead acquire the transposed Jacobian matrix JT . We can, therefore, guarantee
that a solution will exist, even though it is a simplification of the inversion. This
simplification may result in inaccurate transformations; however, it is significantly
faster, and an outcome will be acquired.

The Jacobian matrix consists of the first-order partial derivatives of a function.
For acquiring the partial derivatives of the axis positions of the end-effector with
respect to the joints:

J =


∂px
∂θ1

∂px
∂θ2

∂px
∂θN

∂py
∂θ1

∂py
∂θ2

∂py
∂θN

∂pz
∂θ1

∂pz
∂θ2

∂pz
∂θN

 (2.32)

We derive the positions ∂px, ∂py, ∂pz with respect to θ. θ describes the angles of
the joints for which the position will be computed, over the entire Cartesian plane.
Having a large N joints implies greater granularity and more timesteps until the
robot’s end-effector’s reaches its final position.
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“Pick and Place” Dataset
Generation

In this chapter, we describe the task addressed in the Thesis as well as the tech-
niques used to generate the synthetic dataset adopted for learning the grasping
task. To examine the influence of intermediate representations on the outcome of
our network, we chose a three-dimensional block world scenario as the target task.
In a three-dimensional block world, blocks with basic shapes should be placed
in different locations based on natural language commands. We could request a
block be moved from its initial position to a new location and a physical robot
should be able to perform the action. Commencing the exploration of different
datasets for achieving such a task, the Extended Train Robots 1 was the dataset
of choice. The ETR dataset contains visual data; however, the images lack any
kind of annotation. Our goal is to augment the dataset in a manner that allows
for filling the missing data. To generate the missing information, we would, there-
fore, need to represent the data in different domains which will be described in the
following sections. Figure 3.1 shows an example of an image provided by the ETR
dataset, along with the images which we captured specifically for conducting our
experiments, as well as the simulated environment which we designed to generate
physical properties of a robot performing the pick and place task.

(a) ETR layout1 (b) augmentation (c) simulation

Figure 3.1: The sixth layout in the ETR dataset shown in different domains

1The Extended Train Robots dataset: http://archive.researchdata.leeds.ac.uk/37/
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(a) initial layout1 (b) final layout1

Figure 3.2: The initial and final layouts for a command from the ETR dataset

3.1 The Extended Train Robots Dataset

The Extended Train Robots 1 is a synthetic dataset, explicitly designed for the
task of grasping blocks using a robotic arm. The dataset was published by the
University of Leeds and was collected through the Amazon Mechanical Turk 2

platform. Human annotators were shown two simulated images: the initial image
displaying an 8×8×8 grid with blocks laid on a surface at predefined positions on
the grid, and a final image showing a configuration with a single block displaced.
The participants had to annotate the scene with a natural language command that
describes the difference between the two images in an imperative form, e.g., place
the purple pyramid on top of the blue and green stack of blocks. The command
describes the transition from the first image to the second image in figure 3.2. The
dataset is segmented into five files, each containing information pertaining to a
certain configuration. The files describe:

1. Layouts

The layouts describe the visual grid world configuration, such as the block
positions, their types and their colors as well as the robot arm’s position along
with its state. The positions of the blocks are represented as tuples with three
elements, where the first element is an integer signifying the position of the
block on the x-axis (0 implies the block is closest to the robot, whereas 7
implies it is farthest from the robot). The second element of the position
tuple signifies the location of the block on the y-axis (0 implies that the
block is position right-most of the grid with respect to the robot’s view of the
layout and 7 signifies the left-most location). The third element represents

1The Extended Train Robots dataset: http://archive.researchdata.leeds.ac.uk/37/
2Amazon Mechanical Turk: https://www.mturk.com/

36

http://archive.researchdata.leeds.ac.uk/37/
https://www.mturk.com/
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the position of the block on the z-axis (0 implies the block is located on
a flat surface and 7 implies the block is located at the top-most position
on the grid). The types of blocks are described as cubes or prisms. The
blocks could be any of the following colors: yellow, white, gray, magenta,
blue, cyan, red, and green. The gripper position is represented as a tuple
with three elements. The three elements of the robot arm’s position tuple
represent the location of the arm, following the same pattern as the block
positions. The state of the robot’s arm is also provided through a boolean
flag called open (a value of False implies the robot’s fist is closed, whereas
True implies the opposite). Each layout has a unique identifier.

2. Scenes

The scenes relate the initial layout and the final layout. The layouts are
referenced through their identifiers. The scenes act as a lookup table for
specifying the transition between the different layouts. Each scene has a
unique identifier.

3. Commands

The commands are the natural language sentences describing the transitions
between layouts. The commands refer to the scenes and associate the English
language sentences with their corresponding scenes. Each command has a
unique identifier.

4. Linguistically oriented semantic representation

The Linguistically Oriented Semantic Representation (LOSR) contains the
tree-structured representation of the commands in RCL. Each LOSR anno-
tation references the corresponding command through its identifier.

3.2 Visual Data: Augmented Reality

To generate the visual data used in this Thesis, we augment the three-dimensional
blocks on a checkerboard pattern. We capture multiple images showing a checker-
board sheet lying on a table from different angles to facilitate the initial step
of image calibration. After calibrating the images, three-dimensional computer-
generated objects are superimposed on the images.

3.2.1 Environmental setup

An environment describes a collection of images which represent similar visual
setups with slight differences. These images are captured from different angles and
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distances. The individual images will be referred to as environmental views.
Different variations are applied to the environment. The variations involve a change
in:

1. Lighting condition

The lighting condition refers to the illumination intensity in the room. We
adjust the light intensity by switching on or off a portion of equally spaced
lighting sources, each with an illumination intensity of around 450 lux. Three
lighting modes are applied, with bright lighting having all six light sources
switched on, dim lighting having three out of six lights sources switched on.
A mixed lighting setup offers a random variation of lighting conditions per
environmental setup.

2. Distractor objects

Randomly placed objects on the table or within the camera’s field of view act
as visual distractors. They serve the purpose of providing negative examples
for visual object detection and assist in regularizing the dataset. These ob-
jects include toys of different shapes and sizes, resembling fruits, vegetables,
and miscellaneous objects. An environmental setup could either include or
exclude visual distractors.

3. Table surface

Two different tables are used for augmenting blocks on top of them. One is a
rectangular black table, while the other is a smaller round white table. The
table is changed in an attempt to minimize background bias.

3.2.2 Calibration

We apply six variations to the environmental setup. The variants are:

1. Bright lighting showing a round white table having no distractor ob-
jects in view

2. Dim lighting showing a round white table having no distractor objects
in view

3. Mixed lighting showing a round white table having distractor objects
in view

4. Bright lighting showing a rectangular black table having no distractor
objects in view
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5. Dim lighting showing a rectangular black table having no distractor
objects in view

6. Mixed lighting showing a rectangular black table having distractor
objects in view

Around 60 images were collected per environmental setup with slight modifications
to the camera’s focus across environmental setups. The focus is fixed for each
environmental setup, else camera calibration would not be possible. We set the
aspect ration to 16 : 9, resulting in images with a width of 1920 pixels and a height
of 1080 pixels. We use a 10× 7 checkboard pattern for calibrating all images. The
calibration is performed in two stages:

1. We use a fisheye lens camera for capturing the images. In the first stage, we
apply fisheye image calibration using the OpenCV [11] python wrapper. The
built-in function fisheye.calibrate 1 is used to generate the translation
and rotation vectors along with the camera matrix. This function assumes
that the checkerboard pattern is visible in all images for which the calibration
takes places. The calibration function requires knowledge about the two-
dimensional points in the image (image points) and three-dimensional points
in the world frame (object points), signifying the position of the checker-
board square corners in both frames. The corners are acquired using the
OpenCV function: findChessboardCorners 1 which takes the number of
checkerboard squares in each dimension as input along with the image as
arguments. The checkerboard corner finder detects the corners by convert-
ing the image color to monochrome and dilates the image to identify the
edges. The corners are refined using the cornerSubPix 1 function with a
window size of (11, 11), running for a maximum of 10−6 iterations with an
early stopping criteria of ε = 30. After successfully acquiring the camera
matrix for each environmental setup, we undistort the corresponding images
through the fisheye.initUndistortRectifyMap 1 function, which gener-
ates two maps. We call the remap 1 function to linearly interpolate the image
points projected onto the two maps, resulting in an undistorted image.

2. Assuming the images were successfully undistorted in the previous step, we
proceed to recalibrate all the new images together in order to acquire a
camera matrix that would facilitate performing pose estimation on images
combined. We follow the same steps taken for the fisheye calibration, using
the OpenCV function calibrateCamera 1 instead of fisheye.calibrate 1.
In this step, we are concerned with acquiring a unified camera matrix for all
the images, therefore image undistortion is not required.

3.2.3 Pose estimation

After completing the calibration, we estimate the pose of the checkerboards vis-
ible in selected images. The estimation is acquired by applying Random Sample

1For more details refer to the OpenCV documentation: https://docs.opencv.org/2.4/.
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(a) fisheye image (b) edge detection (c) pose estimation

Figure 3.3: The calibration and pose estimation procedures demonstrated using
the sixth layout in the ETR dataset

Consensus (RANSAC) [26] to solve the Perspective-n-Point (PnP) problem. We
turn to OpenCV for solving the pose estimation problem, calling the function
solvePnPRansac 1. We feed the camera matrix acquired in the second calibration
step to the PnP solver. The PnP solver function returns a new set of translation
and rotation vectors with outliers excluded. These vectors are used for the object
augmentation. We then perform the pose estimation on each environmental view
independently. Figure 3.3 displays the raw image followed by the image acquired
after the first calibration step. After performing the pose estimation, we visualize
a three-dimensional mesh signifying the grasping region upon which the the blocks
are to be overlaid (figure 3.3(c)).

3.2.4 Augmentation and domain randomization

We virtually augment two three-dimensional objects, namely pyramids and cubes,
with eight different colors per object. These objects and their properties are ac-
quired from the Layouts file described in section 3.1. The ETR dataset contains
prisms instead of pyramids; however, for technical reasons, we replace all occur-
rences of prisms in the dataset with pyramids. This simple workaround solves the
problem of ambiguous shape recognition from different views, where a prism could
be easily misclassified as a cube instead.

First, we extract the positions and descriptions of the objects from the dataset.
We then apply color textures on either of the two shapes and project those blocks
onto the environmental view until all blocks within a layout are generated.

We define a scaling factor for the blocks to match the positions of the blocks
in both the camera view and the three-dimensional view. The scaling factor ap-
proximates the actual size of the blocks, which is around 2.63 cm in all directions.
We use the OpenGL [96] library for creating the three-dimensional block shaped
projections, after which we superimpose the projections onto the real images. Us-
ing the translation and rotation vectors as well as the camera matrix which was
acquired earlier, we map the camera view to the model view matrix in OpenGL.
During the augmentation process, we acquire the bounding boxes surrounding the
blocks by setting all pixels around the generated object to zero. All non-zero pixels
are detected, and the edges of these pixels are stored, forming the bounding boxes.

1For more details refer to the OpenCV documentation: https://docs.opencv.org/2.4/.
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Figure 3.4: The sixth layout in the ETR dataset superimposed on 15 different
environmental views

The 15 different environmental views chosen for augmenting objects are shown
in figure 3.4. Note that the views contain the different variations including aug-
mented objects, different poses of the view, and different tables with different
lighting conditions.

3.2.5 Noise and distractors

On choosing several environmental views, we also apply different noising schemes
to regularize the data in preparation for training. We make sure that several
environmental views contain distractor objects as well. The noising is done on two
levels. The first noising level (domain randomization) involves the preprocessing of
the dataset so as to create duplicates of the original environmental view for a given
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(a) original (b) noised

(c) noised (d) noised

Figure 3.5: The sixth layout in the ETR dataset superimposed on one environmen-
tal view with random noise applied to the background, lighting and blocks (pose,
size and color)

layout with the blocks slightly relocated, resized, and rotated. The light source is
also modified, changing the contrast of the background image as well as the blocks.
An example of this noising scheme is shown in figure 3.5. In the second level of
augmentation, we randomly apply visual transformations to the rendered image
after the blocks were augmented atop the background image. The second level of
augmentation is applied during training and is essential for regularizing the data.

1. Level 1: preprocessing noise (domain randomization)

Several transformations are applied to the blocks. Their scales are randomly
varied in all directions within 10% of their original size. The blocks are
randomly rotated within 6◦ on the x and y axes, and 10◦ on the z axis,
relative to the block’s centroid. Finally, the blocks are displaced by 1 cm
in all directions. The contrast and lightness of the background, as well as
the OpenGL virtual light source, are varied within a range of 0.8 and 1.2.
On this scale, a value of 1.0 represents the original image, and a value of 0
represents a grey image. Similarly, the color intensity of each block is varied
in the range of 0.8 and 1.2 following the same scale.
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2. Level 2: image transformation (data augmentation)

During the process of sampling images for training the neural network, we
apply transformations to the image. The image is randomly rotated within
10◦ in all directions relative to the centroid of the image, randomly translated
by 10% of the original image size in all directions relative to the centroid of
the image. The image is also randomly sheared within 10◦ in all directions
relative to the centroid of the image, and finally, the image is randomly scaled
within the range of 0.8 and 1.2 times the scale or the original image.

3.3 Joint Coordinate Data: Simulation

The ETR dataset provides the Cartesian coordinates for the robot arm’s end-
effector in the three-dimensional block world space. For the purpose of this Thesis,
we are interested in acquiring the coordinates of the robot’s arm for reaching such
a position. The process of acquiring the arm positions in the real world would be
time-consuming. As an alternative, we resort to modeling the robot of interest in a
simulated environment. The robot used is known as the NeuroInspired COmpanion
(NICO) [49], a humanoid child-like robot developed in the Knowledge Technology
group at the University of Hamburg. NICO was chosen for its child-sized figure and
its dexterity which resembles that of a human. The robot’s arm is composed of four
Dynamixel 1 AX-12A speed controlled servo motors. At the end-effector, a Seed
Robotics 2 SR-DH4D tendon-operated fist is attached. The gripper is composed of
three fingers, suitable for grasping small objects. The robot, therefore, enjoys six
degrees of freedom, making it suitable for the task at hand. The NICO robot is
virtualized and described using the Unified Robot Description Format (URDF) 3.
The URDF contains the kinematic and visual specifications of the robot.

The Multi-Joint dynamics with Contact (MuJoCo) [100] simulator is used for
acquiring the coordinates of the arm. MuJoCo is a model-based physics engine,
which closely simulates real robots, designed for industrial and research purposes.
MuJoCo has an internal converter capable of interpreting URDF files and repre-
senting the descriptions in a compatible format known as MJCF.

3.3.1 Environmental setup

In the context of simulation, we refer to the virtual setup of the robot’s surrounding
as an environment. We construct a single environment, constituting of the vir-
tualized NICO robot, along with a rectangular white table, and no distractor
objects in the robot’s view. The visual properties are not of great importance
for the purpose of acquiring the joint coordinates; however, we emphasize their
precision for the purpose of testing the performance of the neural network based

1Dynamixel actuators by Robotis: http://en.robotis.com/
2Seed Robotics: http://www.seedrobotics.com/
3URDF: http://www.ros.org/wiki/urdf/
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on images acquired from the simulator. The collision of boundaries match the
visual structures, bringing the simulation closer to the physical environment’s con-
straints. We set up the environment to have the default ambient light source, so as
to maintain an illuminated view of the surrounding. Three cameras are placed in
the simulated environment: two cameras are attached to the robot’s eyes to get a
view of the grasping region, similar to that of the physical robot. A single camera
overlooks NICO and the table from a perspective view. A checkerboard patterned
sheet is placed on top of the table, to resemble the physical view of the grasping
region as closely as possible.

3.3.2 Simulation

After acquiring the layouts from the ETR dataset, we place three-dimensional
blocks resembling the description’s color and shape. As justified in section 3.2.4,
we assume prisms to be pyramidal in shape. The blocks are placed approximately
above the square spaces of the checkerboard pattern, where each square has a height
and width equivalent to the blocks’ widths and heights. The block dimensions are
set to be 2.63 cm in all directions.

In order to reach the blocks using the robot’s arm, we need to acquire joint
angles that facilitate the movement of the gripper. The joints of interest are those
which describe the robot arm’s pose. We use NICO’s left arm for grasping objects.
We are interested in acquiring the arm’s five joint angles as well as the gripper state
(opened or closed). The shoulderψ represents the yaw of the entire arm, whereas
shoulderθ represents the arm’s pitch. Extending from the shoulder is an elbow
which controls the pitch of the forearm and is denoted by elbowθ. The gripping fist
connects to the forearm and is capable of rolling and changing its pitch, denoted
by fistφ and fistθ. Finally, we must also acquire the gripper state, where grip is a
boolean, when set to True signifies a closing of the gripper and False signifies the
release of the object. We set the simulator to operate in two modes. One mode
accepts Cartesian coordinates in the form of x, y, and z discrete positions on
the three-dimensional grid, whereas the other accepts actuator angles for each
arm joint. The two modes of operation differ by the input to the simulator:

1. Cartesian coordinate input

The Cartesian input variant is used to generate actuator angles given the
location of the block. We create an 8× 8× 8 grid for positioning the blocks
in predetermined locations as shown in figure 3.6. We define these locations
as sites. In the MuJoCo simulator, sites are geometric objects which are not
influenced by the physical properties of the environment and are merely used
for representing locations of interest relative to the body frames. The bodies
represent elements encompassing geometric objects, sites, joints (moveable
links connecting bodies), physical constraints and other bodies. The kine-
matic tree is constructed by nesting bodies in parent bodies. We aim for
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Figure 3.6: Grasping region highlighted in red showing the discrete positions for
block placement in simulation

the bodies to reach the desired site by placing a motion capturing sensor
(mocap) at the end-effector and moving towards the site. This allows the
kinematic solver to perform inverse kinematics and produce the actuator
angles for reaching the location of interest.

We use the DeepMind control library (dm control) 1 for python, which inter-
faces directly with MuJoCo. To move the mocap, we set the mocap pos to
the site xpos, and repeat the action until the end-effector reaches the block.
Since the blocks can be reached through multiple poses, this would mean that
the robot’s arm might reach the desired location while obeying all the im-
posed soft constraints, yet the pose might appear irregular and physically
implausible. To limit such consequences, we enforce a sequence of actions as
shown in figure 3.7. The robot initially prepares for grasping to achieve the
pose shown in figure 3.7(a). The robot is then ready to grasp the block. At
this stage, the site position corresponding to the initial block location is ex-
tracted based on the Cartesian grid position. The arm approaches the block
and closes its gripper. Once the robot reaches the block, the actuator angles
are recorded, and the robot proceeds to place the block in the final location.
On completion, the actuator angles are again recorded. Finally, we store the
newly acquired actuator angles in the dataset with their corresponding scene
identifiers.

1The DeepMind Control Suite and Package: https://github.com/deepmind/dm_control/
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Chapter 3. “Pick and Place” Dataset Generation

(a) preparing (b) ready (c) reaching

(d) grasping (e) picking (f) ready

(g) reaching (h) placing (i) complete

Figure 3.7: The grasping sequence performed by the robot in simulation when
requested to place the red pyramid on top of the red cube

2. Actuator angle input

It is necessary to map the actuator angles to actions for testing the outcome
of our neural network. To perform the actions, we no longer use the motion
capture sensor for moving the arm but instead feed the angles directly as
input to the actuators. Since we do not have the complete sequence of
actions stored, we have to define the interpolated movement steps during
actuation as well. We follow a similar approach by moving the arm to the
predefined poses, namely: preparing, ready and reaching as shown in figure
3.7. Instead of moving the mocap to pick and place the object, we feed the
actuators with the angular input.

3.3.3 Visual data

We capture images during simulation from the robot’s view for testing the perfor-
mance of the neural network on unseen data. The cameras are placed in positions
approximating NICO’s cameras. The buffered images are extracted before per-
forming the simulation, and bounding boxes are generated following the method
mentioned in section 3.2.4. Examples of the images are shown in figure 3.8.
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(a) left eye (b) right eye

Figure 3.8: The views from the robot’s camera showing the table and the blocks
in the simulated environment

3.4 Linguistic Data

The commands and LOSR are acquired directly from the ETR dataset. By match-
ing the commands with their corresponding RCL structured LOSR, we can under-
stand the requested action in both the human-readable format and the robot ori-
ented language. The single space delimiters separating the words are suitable for
splitting the words into tokens; however, the LOSR commands require separators
encompassing special characters (e.g., brackets and colons) to avoid chunking en-
tire commands as single words. For consistency, we split both the commands and
the LOSR by the spaces between the words and separate any special characters
(e.g., punctuations, brackets, and symbols).

3.4.1 Noise

Augmenting natural language sources is an open research topic, and remains a
challenge for researchers in the field of natural language processing. Adding noise
to regularize the data is done with great caution as well, since shuffling words
or rephrasing sentences might change their meaning. For our purpose, we are
not interested in modeling language as accurately as possible, rather reducing
overfitting without severely compromising the quality of the translation. The noise
was applied exclusively to the natural language commands. The following noising
schemes were conducted:

1. Remove letter erases a single character from a given word

2. Add letter inserts a single character to the word

3. Repeat letter inserts a single character to the word, following an existing
character

4. Flip letter exchanges two characters in a word

5. Remove punctuation erases punctuations from the word
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6. Flip case changes from lowercase characters to uppercase characters in a
single word and vice-versa

7. Relocate word changes a word’s position in a sentence

8. Remove space combines two words into a single word

Move the red prism on top of the blue cube .

Move the red prismon top of the bLue cube                                            Remove space   Flip case   Remove punctuation

move the roed prism on top of the blue ucbe .                                         Flip case   Add letter   Flip letter 

Move te red pprism top on of the blue cube .                                          Remove letter   Repeat letter   Allocate word   Add letter 

Figure 3.9: The first sentence represents the clean sequence. Perturbations are
applied to the clean sequence as shown in the lines to follow. To the right, the
types of perturbations applied to the sequence are shown

The noising schemes were intentionally kept simple and were chosen randomly
for each command. Between one and four perturbation could be applied to a
single sentence. Note that the noise is only applied on the original sequence and
not transitively: we do not perturb already noisy commands. Applying the noise
on a sentence results in perturbations as shown in figure 3.9.
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Chapter 4

Sensorimotor Intermediate Fusion

In this chapter, we propose a neural network architecture capable of learning motor
coordinates given visual and textual data as input. We present the training pro-
cedure as well as the modifications applied to established neural networks which
allow for a change of the task they were designed to address. We also describe the
input variants and the preprocessing steps taken to construct the data variants as
well as the purpose of each modification.

The sensorimotor neural network is designed to receive sensory input and gen-
erate robotic arm joint angles for performing an action. The joint coordinates are
fed directly into the motors and drive the robot to move to a certain pose until it
reaches that desired pose. We combine the outputs of the RetinaNet [62] object de-
tection neural network described in section 2.1.10 with the outputs resulting from
the Transformer [103] language translation network described in section 2.1.11.
The combination is performed through a concatenation of the units branching
from either network, after which the dimensions are reduced, and the final output
of the network produces the targeted coordinates.

It is common to combine tasks in neural networks branching from a single input
so as to improve the performance of a neural network. This is commonly known
as multi-task learning and has proven useful for improving the performance of all
the tasks at hand. Another approach where a network receives multiple inputs is
described as multimodal learning. A combination of multimodal and multi-task
learning is described as a multi-input and multi-output (MIMO) model. A MIMO
architecture accurately describes our approach, where a number of auxiliary tasks
are introduced to increase the neural network’s performance. We refer to the
auxiliary tasks as intermediate representations.

Both of the employed modules learn specific tasks independently. The Reti-
naNet learns object localization and classification in the form of bounding boxes
surrounding those objects of interest. The Transformer transduces one language
to another, encoding the source language to produce the targeted language as an
output. The primary objective of the network is to successfully locate objects
of interest based on a textually represented command, which also describes the
target of displacement for that object. Not only would the proposed intermediate
representations hypothetically enhance performance, but would generally facilitate
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the explainability of the neural network’s outcomes. By visualizing and examining
the outputs of the independent modules, we could potentially understand how the
network acquired the main objective’s outcomes.

In the following sections, we detail the mechanism by which the modules are
connected to the fusion network. A basic fusion network is also introduced, to
realize a combination of the intermediate representations, eventually inferring the
joint coordinates for actuating the robot’s arm.

4.1 Vision Module

The vision module is concerned with the detection of objects in an image, as well
as propagating the recognized features to the rest of the fusion network. Being the
interface between the camera input and the fusion network, the vision module has
to handle raw images captured before the robot initiates motion. We employ the
RetinaNet for handling the object detection process.

4.1.1 RetinaNet architecture

The RetinaNet follows the architecture described by Lin et al. [62]. We extend
the Keras 1 based implementation 2 of RetinaNet for making it compatible with
our fusion architecture. The base model integrates ResNet [41] as the backbone
model, with 50 layers by default. Extending from the backbone, a Feature Pyramid
Network (FPN) connects to the ResNet creating lateral connections between the
last three convolutional layers. The RetinaNet FPN is extended with 2 layers,
resulting in a total number of usable pyramid layers equivalent to 5. Each pyramid
layer has 256 output channels.

Branching from the FPN, the RetinaNet has two parallel subnetworks: The
classification subnet which predicts the probabilities of objects existing at each
spatial position, and the regression subnet for regressing over bounding boxes to
match the ground-truth boxes. The parameters are not shared across the subnets.
The subnets are designed as such:

1. The classification subnet is constructed using four 3× 3 convolutional layers
with 256 channels for each FPN layer, and parameters shared across all the
FPN layers. Each convolutional layer is followed by a ReLU activation, with
a sigmoid activation for the final layer. The outputs are of size KA where
K represents the number of object classes to be detected, and A represents
the number of anchors. Anchors describe the predefined sizes and locations
for the potential objects found in an image. We use 9 anchors for all the
experiments. The final layer results in an output representing whether a
class belongs to an anchor or not, along with the class index.

1Keras: https://keras.io/
2Keras Retinanet: https://github.com/fizyr/keras-retinanet/
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Figure 4.1: The RetinaNet architecture showing the node at which the network
branches to the Fusion network

2. The regression subnet is constructed using four 3 × 3 convolutional layers
with 256 channels for each FPN layer, and parameters shared across all the
FPN layers. Each convolutional layer is followed by a ReLU activation, with
a sigmoid activation for the final layer. The outputs are of size 4A where
A represents the number of anchors. There are 4 linear outputs per anchor,
each regressed to the nearest ground-truth box.

In addition to the two subnets described, we introduce a subnet to forward the
FPN to the fusion network. We call it the fusion subnet. This subnetwork has
a structure identical to the classification subnet, replacing K number of classes
with an arbitrary number D defining the number of nodes. For a majority of the
experiments, we set D to 4. The modified RetinaNet architecture, displaying the
extra fusion subnet is illustrated in figure 4.1. Note that the fusion subnet does
not have a loss function explicitly assigned to it since it has no output layers. The
losses and their properties for the classification and regression subnets, along with
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the training dataset and pipeline are described in the following section.

4.1.2 Training and validation

The regression subnet uses a smooth L1 loss function [108, p.24], while the clas-
sification subnet uses a Focal loss function [62], with a γ mask of 2 and a class
weight α of 0.5. The weights are randomly initialized, sampled from a Gaussian
distribution with a standard deviation σ of 0.01. All layers excluding the subnets
contain a bias units with a weight of 0. For the classification subnet, the bias units
are initialized with a weight of −2. For experiments involving the RetinaNet exclu-
sively, we use a stochastic gradient descent optimizer (described in section 2.1.2)
with a weight decay of 0.0001 and momentum of 0.9. The initial learning rate
is set to 0.01 initially and divided by 10 after 60k iterations and again after 80k
iterations. The learning rate decay is ignored since all our experiments involving
the RetinaNet independently are halted before reaching the 60k iteration mark.

Figure 4.2: The sixth layout in the ETR dataset superimposed on 3 different
environmental views used for validation

We train the RetinaNet on the augmented images created using computer-
generated blocks as described in section 3.2.4. Note that we only train the network
using the noised images. The image noising process is described in section 3.2.5.
We apply the preprocessing noise (with three randomly noised images per layout
and environmental view) and image transformation noise during the training phase.
For validating the outcomes, we use the three environmental views shown in figure
4.2 without added noise. The remaining 12 environmental views are used for
training. Figure 3.4 in section 3.2.4 displays all the environmental views used
for generating the correctly annotated layouts in the ETR dataset (described in
section 3.1).

We justify our training-validation split by pointing out that the number of
layouts is limited; however, we are interested in understanding the visual scene
from different angles and distances. For validation, we use the environmental views
which closely resemble the scene as would be viewed through the robot’s cameras.
In this manner, we guarantee that there are no overlaps between the environmental
views found in the training dataset and the validation dataset, indicating that any
improvement in the validation set would imply an improvement in the model’s
generalization capabilities. The images extracted from the simulator as described
in section 3.3.3 are used for testing the RetinaNet model.
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4.2. Language Translation Module

The network regresses over the bounding boxes extracted using the method
described in section 3.2.4. The bounding boxes are represented as four floating
point values. To classify the blocks, we assign a class encoded as one-hot vectors
for each of the block classes in the dataset. We have a total of 16 classes, where each
class describes both the block’s shape (cube and prism) as well as its color (yellow,
white, gray, magenta, blue, cyan, red, and green). Examples of classes would
therefore be cube red or prism green. Our dataset includes a total of 625 layouts
and 15 environmental views per layout, with 3 noised versions (preprocessing noise)
per image.

4.1.3 Inference

The inference phase entails forwarding the image through the RetinaNet. The
objects classes are detected along with their bounding boxes. The detections are
ordered by their detection scores, and the top 1k detections are maintained. A
threshold of 0.05 is set for the FPN confidence, implying that any detections below
that threshold are discarded. Greedy Non-maximum suppression (NMS) [43, p.20]
is applied to all the detections to discard overlapping bounding boxes which infer
the same class. A threshold of 0.5 is set for the NMS, indicating that any bounding
boxes with an Intersection over Union (IoU) exceeding 50% are discarded in favor
of the bounding boxes belonging to the most confident prediction.

4.2 Language Translation Module

The language translation module is concerned with the translation of English lan-
guage commands to RCL, as well as propagating the modeled features to the rest
of the fusion network. The language translation module has to handle text input
describing the desired action before the robot initiates movement. We employ the
Transformer for handling the machine translation process.

4.2.1 Transformer architecture

The Transformer follows the architecture described by Vaswani et al. [103]. We
extend the Keras based implementation 1 of the Transformer for making it com-
patible with our fusion architecture. The model is composed of an encoder and a
decoder. The encoder receives the English Language command in the form of a list
of tokens as input, whereas the decoder receives the RCL command in the form
of a list of tokens as input. The autoregressive nature of encoder-decoder model
implies that the model should learn to predict the next translated word given the
context of the source (English Language) sequence as well as the target (RCL
representation) sequence. The target sequence is learned by enabling connections
to the tokens in a sequential manner through a lower-triangle binary mask over all
timesteps.

1Keras Transformer: https://github.com/Lsdefine/attention-is-all-you-need-keras/
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Figure 4.3: The Transformer architecture showing the node at which the network
branches to the Fusion network

Since the Transformer is a feed-forward model, the ordering of the words in
a sequence is lost. Therefore, to maintain knowledge of a word’s position in a
sequence, the encoding of a given word is summed with a positional encoding
represented in the form of sine and cosine waves. In section 2.1.11, we describe
the positional encoding method used in the Transformer. The motivation behind
a periodic wave as a positional encoder revolves around enabling the model to
generalize to longer sequences than observed during the training phase.

The encoder and decoder are stacked as blocks which are then repeated for
N times. They are similar in structure; however, the decoder is masked to avoid
leaking connections to words which are unseen yet. Another difference between
the encoder and the decoder is observed in the input each sublayer receives. The
encoder sublayers receive keys and values from preceding sublayers, whereas the
decoder sublayers excluding the first, receive keys and values from the final encoder
layer’s output. The mechanism by which the encoder and decoder are connected
is displayed in figure 4.3.

The intermediate representation of the model is a single fully-connected layer
attached to the final decoder layer’s output. The output layer has a dimension
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of LV where L is the length of the output sequence, and V is the output vocab-
ulary size. We introduce a fusion sublayer for propagating the features to the
fusion network. The sublayer is identical to the output layer, connected directly to
the final decoder’s output, replacing V with an arbitrary number D defining the
number of nodes. For a majority of the experiments, we set D to 4.

Most of the hyperparameters are dependent on the dataset; hence we refrain
from reusing the properties of the baseline model proposed by Vaswani et al. [103]
and instead experiment with various combinations which reap the best results.
Note that the fusion sublayer does not have a loss function explicitly assigned to it
since no output is attached to it. The loss and its properties for the output layer,
along with the training dataset and pipeline are described in the following section.

4.2.2 Training and validation

The output layer uses a cross-entropy loss (described in section 2.1.2) applied on
the logits of the layer after taking their softmax. The index of the maximum
softmax value is set to 1, and all other word indices in the vocabulary are set to
0. This results in a one-hot vector equivalent to the size of the output vocabulary.
The index of the ground-truth and the position of the maximum softmax prediction
are then compared. When a match between the ground-truth and the prediction
is observed, we assume the cross-entropy to be 0; otherwise, the cross-entropy is
computed for the false prediction, and the average loss is returned. The network
optimizes the loss accordingly, with the goal of reducing the misclassifications to
a minimum (ideally 0) over the training examples.

The weights are initialized based on the Glorot et al. [31] initialization method
with random uniform sampling. The layer normalization [4] (shown in figure 4.3)
weights are initialized with a mean of 0 and a standard deviation of 1. For the
layer normalization, an error constant υ is summed with the standard deviation
weight for numerical stability. We set υ to 10−6. For experiments involving the
Transformer exclusively, we use the Adam optimizer [52] with a β1 of 0.9, a β2 of
0.98 and an ε of 10−9. The learning rate is scheduled to decrease based on the
formula:

η = d−0.5model ·min(step num−0.5, step num · warmup steps−1.5) (4.1)

where η signifies the learning rate at a given training step step num. dmodel repre-
sents the size of the multi-head attention outputs combined. An arbitrary number
warmup steps is set to 4000 as proposed by Vaswani et al. In the training phase,
we propagate the English language commands as the source sequences. The words
are split by spaces and preprocessed as described in section 3.4. The correspond-
ing target sequences are the equivalent RCL commands. The source sequences
are noised using the methods mentioned in section 3.4.1. Three noised sequences
of a given clean sequence are used for the source sequence, whereas the target
RCL sequences are untampered. We use the full range of undiscarded ETR (de-
scribed in section 3.1) commands to train and validate the Transformer. 80% of
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the commands from the ETR dataset are used for training, 10% for validation, and
the remaining 10% are reserved for testing. Commands which contain incomplete
sentences, incorrect correspondence between the English language commands and
the RCL commands, spam, and missing references to the layouts of the visual
scenes are discarded. We apply such a noising method (noise applied to the source
only) to avoid learning incorrect transduction from natural language to RCL. This
approach is considered a regularization technique by which we distort the input
only, encouraging the model to generalize better by learning to denoise corrupted
sequences.

Dropout regularization [97] is also applied to the Transformer. Dropout is
applied to each sublayer before normalization. Dropout is also applied to the
summation of the embedding and the positional encoding of the source and target
sequences. For a majority of the experiments, we set the dropout probability to
0.1.

The network classifies the words represented to the network as vectors of a pre-
defined size (depending on the embedding dimension). The output layer projects
the decoder output to a size equivalent to the vocabulary size, where the layer’s
unit indices correspond to the word types (unique words) as ordered by their ap-
pearance in the dataset. Our dataset includes a total of 357 word types (without
noise) and 4850 sequences (without noise), a total of 3882 source word types for
the three noised versions of any clean sequence, and 106 target word types.

4.2.3 Inference

The entire source sequence is fed into the encoder. Since the encoder remains
unchanged during the inference phase, the final encoder output units are acquired
once for every sequence translation. The model predicts a single word at a time
until an end-of-sequence token as observed, or the maximum sequence length has
been exceeded. The output of the model is fed sequentially as the decoder input
after every prediction, updating the mask to include the following word. Decod-
ing the most probable sequence involves searching through all possible outcomes
and determining the best matching translation based on its likelihood. Two com-
mon approaches for inferring word tokens in neural machine translation models
are known as greedy search and beam search. We detail the two heuristic
approaches as follows:

1. A simple approximation of the most likely sequence is known as greedy de-
coding. As the name implies, we are interested in sequential predictions
which offer an immediate reward (minimum perplexity). This indicates that
the word with the maximum likelihood is autoregressively fed into the de-
coder without considering alternatives. After the softmax of the output layer
is computed, we find the unit with the maximum probability and look up
the matching word in the vocabulary with an identical index.

2. In the greedy approach, we do not consider alternative sequences for possi-
ble translations. The alternatives might not immediately result in the best
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translation; however, they may result in a lower perplexity once the entire
sentence is completely transduced from the source language to the target lan-
guage. Beam search [92, p.125-126] is a heuristic search which considers mul-
tiple possibilities for translating a sequence. The search technique employs
a breadth-first algorithm for constructing its search tree. The beam width
is a hyperparameter which defines the maximum number of possibilities at
each pruning stage. W symbolizes the number of beams. Larger beam-width
results in a more accurate translation at the cost of more resources (time or
memory). At each pruning stage, the product of all probabilities is computed
for all beams given the preceding sequence, and the words with the top W
probabilities are selected for the next prediction. A typical value for W is
set to 5 or 10.

4.3 Fusion Module

The fusion module is concerned with combining the features extracted from the
vision module and the language translation module. On integrating the features,
we aim to learn coordinates which enable the robot to initiate movement. Not
only does the neural network learn the coordinates for reaching blocks, but also
relocating them based on a natural language command. We design a simple feed-
forward network for handling the multimodal integration. We call this network
the FusionNet.

4.3.1 FusionNet architecture

The FusionNet combines the fusion subnet nodes branching from the RetinaNet
(described in section 4.1.1) and fusion sublayer nodes branching from the Trans-
former(described in section 4.2.1). The two fusion layers must be of similar dimen-
sions in order to merge them successfully. The number of nodes for both modules
is set to four for a majority of the experiments. After concatenating the Reti-
naNet and Transformer nodes, we flatten them, forming a one-dimensional layer.
The “join” subnetwork shown in figure 4.4 forms a sensorimotor mapping between
the two sensory modalities and the output. The output layer has 14 units with
a sigmoid activation, each describing a motor joint angle or a gripper state. The
first seven units represent the initial grasping pose including the initial boolean
state of the gripper, whereas the remaining 7 units represent the final grasping
pose including the final boolean state of the gripper. Figure 4.4 displays the archi-
tecture of the FusionNet base model which we employ for conducting a majority
of the experiments. The loss and its properties, along with the training dataset
and pipeline are described in the following section.
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4.3.2 Training and validation

The regression output layer uses a mean squared error loss function (described in
section 2.1.2. The weights are initialized based on the Glorot et al. [31] initializa-
tion method with random uniform sampling. For a majority of the experiments
involving the FusionNet along with the vision and language modules, we use the
Adam optimizer [52] with a β1 of 0.9, a β2 of 0.999 and a learning rate of 10−5.

The training and validation sets for both the vision module and the language
translation module remain unchanged. These act as inputs to the FusionNet.
The FusionNet introduces the arm joint angles as an output sharing features from
the RetinaNet and the Transformer. We extract the arm joint angles using the
simulator as described in section 3.3.2. Each example fed into the network has
an image layout (initial layout), a natural language command, an RCL command,
and initial as well as a final arm joint angles associated with it. We mentioned
earlier that the language translation and vision modules accept noisy versions of
each example for training. Since we have a single set of initial and final joint
angles, we would randomly select an example from the noised versions for each
module. Figure 4.5 shows the input selection process during the training phase.
The joint angles are represented in radians. We perform feature scaling upon the
joint angles, such that they are limited to a range of 0 and 1. The approach used
is known as min-max normalization applied by:

xnormalized =
x− xmin

xmax − xmin
(4.2)

where x represents the joint angle in radians, and xmin and xmax represent the
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minimum and maximum values respectively. We extract the minimum and maxi-
mum values by scanning the entire dataset (training and validation datasets) after
the joint angles were generated using the simulator and store the extremes in a
file. The normalization of values is a preprocessing step which allows for faster
training. 80% of the scenes from the ETR dataset are used for training, with 10%
used for validation, and the remaining 10% for testing.

4.3.3 Inference

Due to the autoregressive nature of the Transformer, inferring the initial and final
joint angles must be done over two stages. We follow a similar inference pipeline as
described in section 4.2.3 for translating English language commands to RCL. On
completing the translation, we feed the natural language sequence into the encoder
and the decoded RCL sequence into the decoder of the language translation mod-
ule. The images are directly fed into the vision module, resulting in 14 coordinates
at the FusionNet output.
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Experiment 1: Transformer

The Transformer described in section 2.1.11 acts as the language translation mod-
ule for our fusion network. In this chapter, we conduct experiments related to
the Transformer’s functionality with respect to our dataset. The Transformer is
composed of multiple units, each with its own set of hyperparameters. The values
of these hyperparameters greatly influence the performance of the network. Hence
we try to explore their effect on the Transformer. We proceed by defining these
hyperparameters and their functions.

An essential hyperparameter is the sequence length. Within the context of
the language translation Transformer, the sequence length refers to the number of
words in a sentence. The length of the RCL sequences tends to be significantly
larger than that of natural languages. Since the objective of using the Transformer
is to translate from the English language to RCL, we have to account for the length
of an RCL sequence when setting up the model. For simplicity, the sequence length
for both the encoder and the decoder of the Transformer are set to the same value,
with that being the minimum number of words for all individual RCL sequences
in the ETR dataset. The sequence length is denoted by lseq

The multi-head attention is defined by the number of attention heads. Setting
a higher number of attention heads for the multi-headed attention sublayer allows
the model to focus on different parts of a sequence. However, setting the number
of attention heads to a value too large might add unnecessary complexity and
redundancy in the network. The number of heads is denoted by Nh. The output
of a single attention head must be unified across the network to facilitate residual
projection and to enable the dot product attention.

The feed-forward layer facilitates point-wise projection after performing layer
normalization on the multi-headed output. The feed-forward layer’s dimension is
denoted by dff .

The query and value projections of the Transformer can have a custom size.
Since the weights of these projections are changing throughout the learning process,
their size also has a major effect on the outcome, by indirectly influencing the
granularity of the attention. The query and value projection dimensions should
match. The size of the input embeddings can be predefined as well but is not
restricted by the dimensions of the query and the value projections. The query
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dimension is denoted by dq, and the value dimension is denoted by dv. Since the
dimensions of both the query and the value are identical, we denote dq and dv by
da. The embedding dimension is denoted by demb.

The decoder and encoder blocks can be repeated for any number of times,
stacked on top of each other. Even though increasing the number of layers should
improve performance since the Transformer implements residual connections, the
number of model parameters would increase significantly. This increase would
reflect on the training and inference time and would have a major impact on the
memory allocated for the model. The number of encoder blocks is denoted by
Nenc, whereas Ndec denotes the number of decoder blocks. Since the number of
both blocks is identical, we denote Ndec and Nenc by Nm

A dropout with a certain probability is applied to the Transformer network
during training. This should reduce overfitting and regularize the model. Each
sublayer has a dropout associated with it. Dropout is also applied to the layer
following the summation of the embedding and positional encoding layers for both
the encoder and the decoder. The dropout probability is denoted by Pdrop.

Other hyperparameters describing the training procedure include the number
of training iterations, the batch size, and the optimization algorithm as well as its
properties. The number of training iterations is denoted by Nitr, and the batch size
is denoted by sbatch. The optimizer is denoted by opt with subscripts indicating its
properties where necessary.

The base model properties are summarized in table 5.1.

Table 5.1: The base Transformer network hyperparameters

Nitr sbatch opt optβ1 optβ2 optε Pdrop Nh Nm da demb dff lseq

16k 60 adam 0.9 0.98 10−9 0.1 2 4 12 50 128 200

The authors of the Transformer proposed a technique known as label smoothing
for computing the loss [103]. Label smoothing was shown to harm the perplexity
at the cost of an improved BLEU score. However, the BLEU score in our task
holds little meaning, since RCL is different from natural languages for which the
score was intended to evaluate. Consequently, we did not use label smoothing in
the Transformer experiments. For the experiments to follow, the hyperparameters
are assumed to default to the base model’s properties unless otherwise stated. For
a detailed description of the network and the dataset properties, refer to section
4.2.

5.1 Embeddings

For this set of experiments, we explore the influence of various embeddings on the
outcome of the Transformer. We hypothesize that using a word embedding other
than a randomly initialized matrix could affect the network output. As discussed
in section 2.1.9, Word2vec is implemented in two forms: a continuous bag of words
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5.1. Embeddings

model where a word is predicted given its context and a skip-gram model where
the context is predicted given a word. The model is denoted by w2vmod, where
a value of sg represents the skip-gram model and cbow represents the continuous
bag of words model. Negative sampling is denoted by w2vns, where any value
greater than 0 signifies the number of negative samples. The w2vns exp identifier
represents the exponent shaping the distribution of the negative sampler. The
window size, which defines the distance between the input word or words and
the predicted word or words, is denoted by w2vwindow. We define a minimum
frequency of word occurrence as w2vmin freq, where any word occurring less than
the minimum frequency is ignored. The Word2vec initial learning rate is denoted
by w2vlr and w2vmin lr defines the minimum learning rate. The minimum learning
rate changes linearly from its initial value towards the minimum learning rate value
over a predefined number of iterations. The number of iterations is dependent on
the size of the corpus itself. Therefore, we define the number of epochs instead,
and denote it by w2vepoch. The properties of the base Word2vec-CBOW model
are shown in table 5.2. w2vmean is a flag for defining whether the sum or the
mean of the context vector will be used for the cbow model. Enabling the flag uses
the mean, and disabling it uses the sum. Note that w2vmean is enabled for the
base Word2vec-CBOW model. The properties of the base Word2vec skip-gram are

Table 5.2: The base Word2vec CBOW hyperparameters

w2vepoch w2vmod w2vns w2vns exp w2vwindow w2vmin freq w2vlr w2vmin lr

200 cbow 5 5 9 0.75 0.025 0.001

shown in table 5.3. Most of the properties are identical for both Word2vec models
to avoid biases when using the produced embeddings. Note that the w2vwindow

Table 5.3: The base Word2vec skip-gram hyperparameters

w2vepoch w2vmod w2vns w2vns exp w2vwindow w2vmin freq w2vlr w2vmin lr

200 sg 5 5 9 0.75 0.025 0.001

size is defined as a function of the input data. Since we have four samples of each
sequence for training (the original sentence and its three noised versions), we set
w2vwindow to 1 + (4 × 2). Other properties are set as per the hyperparameters of
the base models introduced in [66]. Note that the results reported in the following
experiments represent the validation losses unless specified otherwise.

5.1.1 Experimental setup

We use the properties defined for the base model. The datasets described in section
ADD SECTION are used for training and evaluation. We experiment with both
Word2vec base models (base Word2vec CBOW and base Word2vec skip-gram) and
the default randomly initialized vectors as an alternative. We also vary the demb
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Chapter 5. Experiment 1: Transformer

within the range of {10, 50, 100, 200, 500}. Note that the lookup embedding table
for both the English language source sequence and the RCL target sequence are
pretrained on their respective training sequences separately. The experiment was
repeated three times for each setup. We ran the experiments for three days on an
Nvidia GTX 1050 Ti graphics processing unit.

5.1.2 Results and discussion
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Figure 5.1: The average cross-entropy for three repetitions per embedding type
and dimension
1 The default embedding is randomly initialized and scaled using the method
proposed by He et al. [40]

Figure 5.1 shows the average cross-entropy for all three repititions per embed-
ding type and dimension. We observe that embeddings of size 10 result in the
highest (worst) cross-entropy for all three embedding types. For the three repe-
titions, we acquired a mean and a standard deviation of 0.2818 ± 0.0077 for the
Word2vec CBOW embeddings, 0.2038± 0.055 for the randomly initialized embed-
dings with He et al. [40] scaling, and 0.1901± 0.0036 for the Word2vec skip-gram
embeddings. We also observe that embeddings of size 50 yield the lowest (best)
cross-entropy, yet increase proportionally with the embedding size. This indicates
that embeddings of size 50 are best suited for our dataset. Word2vec skip-gram
embeddings were found to achieve the lowest cross-entropy amongst the other two
embedding types. The best Word2vec skip-gram model with demb = 50 achieved a
mean of 0.0469 and a standard deviation of 0.0011 for all three repetitions.
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5.2. Layers

Higher embedding sizes add complexity to the learning procedure without
added information; on the other hand, smaller sizes are unable to represent the
semantics of both languages. We did not explore the entire space of possible com-
binations nor do we tie the embeddings of the encoder and the decoder even though
their embedding sizes are set to be identical. Nevertheless, the consistency in the
trend towards a rising cross-entropy with an increasing size indicates that an em-
bedding size of 50 for the target and source languages is relatively proximate to
the ideal size.

5.2 Layers

For this set of experiments, we explore the influence of varying the number of
layers and their dimensions on the network performance. We hypothesize that the
performance of the network would increase as we stack up more layers of encoders
and decoders. However, the degradation problem might still be observable.

5.2.1 Experimental setup

We use the properties defined for the base model. We examine the influence of
Nm by changing its value between {4, 6, 8, 10}, and varying Nh between {2, 4, 8}.
We also vary da within the range of {12, 32, 128, 256} and dh within the range
{128, 256, 1024, 2048}. For all setups, we use pretrained Word2vec skip-gram em-
beddings with demb = 50, since it appears to result in the least cross-entropy
following from the discussion in section 5.1.2. We set sbatch to 5 sequences due to
memory constraints being exceeded as we increase the size of the network. The
experiment was repeated three times for each setup. We ran the experiments for
8 days on an Nvidia GTX 1050 Ti graphics processing unit.

5.2.2 Results and discussion

Increasing the number of layers in the network should in theory improve the per-
formance since residual connections exist between the sublayers. However, the
observation contradicts the expectation. As seen in figure 5.2, the performance
degrades as we linearly increased the number of layers from 4 to 10. We acquired
the lowest (best) cross-entropy with a mean of 0.076 and a standard deviation
of 0.0015 for three repetitions of a setup with Nh = 4, Nm = 4, da = 12, and
dh = 256.

To verify the correctness of the implemented Transformer, we trained the
network with the European Parliament Proceedings Parallel Corpus English-to-
German translation for the years 1996-2011 using a set of hyperparameters iden-
tical to those described in the experimental setup except for embeddings, which
we randomly initialized instead. We set Nh = 8, da = 128, dh = 256 and ran the
experiment for 50k iterations with 3 repetitions per layer size variation. The re-
sults were consistent with those achieved by [103]: increasing the number of layers
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Figure 5.2: The average cross-entropy for three repetitions with different layer
depths, hidden layer dimensions, number of heads, and query dimension.

improves the Transformer’s performance.
In an attempt to solve the issue caused by increasing the number of layers using

our dataset, we turned our attention to the embedding initialization. We restored
the model to initialize the weights using the approach specified by He et al. [40],
however, the performance still degraded as we increased the number of layers.
Optimizing the learning rate and re-adjusting the decay schedule described by
Vaswani et al. [103] would likely yield optimal results as well. However, we avoid
adjusting global hyperparameters such as the learning rate, since the optimizer
will be unified for all modules during the fusion phase. The optimizer, the learning
rate, the learning rate scheduling along with the batch size will be disregarded in
favor of the FusionNet’s requirements.

We observe that increasing the hidden layer size as well as the number of
attention heads benefits the network. Increasing the number of attention heads
makes the network wider, which should result in a degradation in the performance
beyond a certain point. The same applies to the point-wise feed forward (hidden)
layer (dh) and the projection matrices (da). As we increased the number of heads
beyond 4, the hidden layer size beyond 256, and the projection layer size beyond
12, we observed a reduction in the model’s accuracy.

5.3 Regularization

For this set of experiments, we explore the influence of dropout on the model’s
ability to generalize well to unseen examples during training. We also explore the
influence of data augmentation on the evaluation outcome.
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5.3. Regularization

5.3.1 Experimental setup

We use the properties defined for the base model. The Pdrop is chosen from values
in the range {0, 0.1, 0.2, 0.3, 0.4}. After realizing the best Pdrop, we use the dropout
configuration with different modes of perturbation (noise) on the training dataset.
The default training dataset is composed of source sequences with clean English
language commands along with three perturbed commands of each sequence. We
ablate the perturbed sequences linearly ranging from two to no perturbations per
example. We also examine whether training the Transformer on clean sequences
achieves better results. For all experiments, we use the Word2vec skip-gram em-
beddings, with demb = 50. We set sbatch = 5 to achieve results comparable to
those acquired in section 5.2. The experiment was repeated three times for each
setup. We ran the experiments for 27 hours on an Nvidia GTX 1050 Ti graphics
processing unit.

5.3.2 Results and discussion
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Figure 5.3: The average cross-entropy for repetitions trials with different dropout
probabilities

The dropout probability controls the likelihood of discarding words from a
sequence at each training step. We notice from figure 5.3 that the dropout prob-
ability influences the cross-entropy on the validation dataset. A probability of 0.0
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Figure 5.4: The average cross-entropy for three repetitions with different pertur-
bations applied to the training dataset

indicates that dropout did not take place. With a probability of 0.15, we achieved
the lowest (best) cross-entropy with a mean of 0.0841 and a standard deviation
of 0.0016 for all three repetitions. As we increased the probability beyond 0.15,
the results degraded as a result of under-learning since the sequences became too
distorted. Without dropout, we also observe worsened results since it acts as a
regularizer, hence reducing the network’s capability to generalize.

With a dropout probability of 0.15, we moved on to examine whether the
sequence perturbation method described in section 3.4.1 was beneficial. We observe
in figure 5.4 that the default training dataset having clean sequences along with
their three perturbed versions achieved the lowest (best) cross-entropy with a mean
of 0.08417 and a standard deviation of 0.0016 for all three repetitions. Experiments
conducted on clean sequences only achieved the highest (worst) cross-entropy with
a mean of 0.099 and a standard deviation of 0.0011 for all three repetitions. This
indicates that our mixed dataset with clean and perturbed sequences introduces
sufficient regularization to the model without compromising its ability to learn
meaningful patterns.
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Figure 5.5: The average transformer encoder-decoder attention projecting from 4
multi-head attention blocks in the last layer. The source sequences are displayed
vertically, whereas the predicted target sequences are displayed horizontally. In
both (a) and (b), the actions (e.g., Grab, Pick up) have a unique attention pattern
with the decoded sequences compared to other tokens in the sequence.
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5.4 Analysis

We trained the Transformer with hyperparameters matching those of the best
models as concluded through the experiments described in this chapter. We set
lseq = 200, Nm = 4, Nh = 4, da = 12, dh = 256. We used Word2vec skipgram
embeddings with demb = 50 and trained the model for 32k iterations with a batch
size of 30. All other hyperparameters matched the base model’s hyperparameters.

We achieved a minimum cross-entropy (computed over 1k iterations) of 0.0987
for the training dataset with 15.1k commands, 0.0968 for the validation dataset
with 485 commands, and 0.0973 for the testing dataset with 485 commands. This
resulted in a word-level accuracy of 96.8% for the validation dataset and 95.2% for
the testing dataset. The sentence-level accuracy assumes a full match between the
ground truth command and the prediction to be considered a successful parse. We
achieved a sentence-level accuracy of 16.7% on the testing dataset using a greedy
decoder, and 17.5% using beam search with a beam width of 5.

On a word-level, the model appears to show significant improvement over [20];
however, most commands appear to be distorted on a sentence-level. Two major
contributors to this failure were the token position number aligning the natural
language tokens with the RCL tokens, as well as the block colors. In figure 5.5,
we show the encoder-decoder attention matrix projected from the fourth layer in
the Transformer model, averaged over all 4 heads. Although the Transformer has
proven to form meaningful attentive relations between words of the same sequence
(encoder-encoder or decoder-decoder) [103], we observe that it does not attend
well to the encoded sequences with relation to the decoded sequences. We justify
our model’s failure to align words correctly by pointing out that the Transformer
was examined on natural language translation where both sequences are mostly
aligned. However, RCL reorders the sequences to form a parsable tree, and the
fertility ratio between the two sequences is high.

In figure 5.5, we observe a unique attention mask in relation to the actions. The
model segregates actions from other words in the source sequence, signifying that
actions are distinguishable and therefore have a major influence on the decoded
transduction.
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Chapter 6

Experiment 2: RetinaNet

The RetinaNet described in section 2.1.10 acts as the vision module for our fusion
network. In this chapter, we conduct experiments related to the RetinaNet’s func-
tionality with respect to our dataset. We proceed by defining the hyperparameters
of the RetinaNet and their functions.

The size of the image greatly influences the performance of the RetinaNet.
Images with a high resolution require a lot of computational resources, therefore,
they must be resized before passing them as input to the network. The image
input size is denoted by lres

We denote the Focal loss [62] used for classification by focal with subscripts
indicating its properties where necessary.

All backbones used for the RetinaNet were pretrained on 1.2M images from
ImageNet 1 dataset. For all experiments to follow, the backbone is assumed to be
initialized with the ImageNet trained model weights.

Other hyperparameters describing the training procedure include the number
of training iterations, the batch size, and the optimization algorithm as well as its
properties. The number of training iterations is denoted by Nitr, and the batch size
is denoted by sbatch. The optimizer is denoted by opt with subscripts indicating its
properties where necessary.

We summarize the hyperparameters for the RetinaNet base model in table 6.1.

Table 6.1: The base RetinaNet hyperparameters

Nitr sbatch opt optη optmomentum optweight decay focalγ focalα lres

50k 1 sgd 0.01 0.9 10−4 2 0.5 640× 480

For the experiments to follow, the hyperparameters are assumed to default to
the base model’s properties unless otherwise stated. For a detailed description of
the network and the dataset properties, refer to section 4.1.

1Tensorflow ResNet pretrained on the ImageNet: https://github.com/tensorflow/

models/tree/master/research/slim#pre-trained-models
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Chapter 6. Experiment 2: RetinaNet

6.1 Anchors

For this set of experiments, we adjust the anchors of the RetinaNet. Adjusting
the anchor sizes and shapes plays a major role in defining the precision of the
training outcome. The anchors must be defined before the training takes place
since the bounding box regression is based on computing the error between the
anchor locations and the predictions of the box boundaries. Lin et al. [62] report
results based on 9 anchors per feature pyramid level, covering the scale ranges from
32 pixels to 813 pixels with respect to the input image. We avoid diverging too
far from those ranges, yet, we were still interested in assigning anchor sizes that
match the block dimensions in our dataset.

Redmon et al. [87] proposed an anchor-based approach to replace the common
grid-based approaches. The grid-based approaches employ a filter map and stride
with a predefined window size over all regions of the filter to create anchors. Such
approaches assume all targeted objects are of similar proportions and sizes. With
the anchor-based approach, quadrilateral shapes are predefined for different objects
making the approach more flexible to varying sizes. Redmon et al. define the
anchor boxes using a k-means algorithm, by which annotated boxes in the training
dataset are clustered into c clusters, equivalent to the number of anchors. Although
the RetinaNet relies on the grid-based approach, we apply a similar method of
clustering to get an impression of the ideal anchor sizes, after which we interpolate
the sizes to match the RetinaNet anchor box configuration.

We apply a k-medians clustering algorithm 1 to group bounding boxes by the
proximity of their Intersection over Union (IoU) [37] to the centroids of the clus-
ters. Moreover, we apply the distance measure described by Redmon et al. [87].
The medians widths and heights of bounding boxes in each cluster represent the
updated centroids of the clusters after each iteration. We eventually compute the
IoU to evaluate the fitness of the clusters to the ground truth boxes. The difference
between our approach and the approach proposed by Redmon et al. [87] is that
they consider the means of the cluster elements to update the centroids, whereas
we use the median. Through an empirical evaluation 1, the medians were found to
generate better clusters.

By default, the RetinaNet applies 9 anchors to each pyramidal layer, where
they cover a range of 32 pixels up to 813 pixels. Each layer anchors are sized by
three factors {20, 2

1
3 , 2

2
3} and three aspect ratios {1 : 1, 1 : 2, 2 : 1}. We use a

similar number of 9 anchors for clustering.

Although anchors play a significant role in vision-based object detection models,
other factors come into play. Setting the anchor boxes to a minuscule size would
not enable learning even when the anchors match the ground truth boxes. Small
objects are a challenge for neural networks to detect and can hinder accurate
learning of bounding boxes. To minimize the issue, we crop the images from our
synthetic “Pick and Place” dataset to the size of the object placement region.
Since we are able to extract bounding boxes using the method defined in section

1k-means for generating anchors: https://github.com/lars76/kmeans-anchor-boxes/
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6.1. Anchors

3.2.4, we can infer the size of the visible region (where objects are overlaid on the
image) by ensuring that none of the bounding boxes are cropped. We define a
crop ratio identical to our images’ aspect ratios, and multiply it by scale factors
of {0.12, 0.25, 0.5, 0.75, 0.9, 1.0}. We crop the images with a crop region centered
around the object placement region, starting with the minimum crop ratio up until
all bounding boxes are visible or the maximum scale factor is reached. On cropping
the images, we translate the anchor boxes to the left and to the top by the number
of cropped pixels in either direction to restore their original position. We examine
our k-median clustered anchors on the images before and after cropping.

6.1.1 Experimental setup

We assign c = 9 clusters to the k-medians algorithm. The k-medians clustering
algorithm is trained on all 30k images in the training dataset. We set the maximum
number of k-medians iterations to 100, with an early stopping criterion. The early
stopping criterion is triggered when no change in clusters is observed since the last
iteration. Nine random bounding box centroids are chosen as the initial centroids
for the clusters. The k-medians algorithm is trained on both the cropped and
uncropped images independently. Each k-medians experiment was repeated 10
times.

6.1.2 Results and discussion
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Figure 6.1: (a) The mean IoU for 10 k-median runs with 9 clusters applied on the
IoU for all training images (b) The 9 anchor boxes generated by the best achieving
run

We ran the k-medians clustering algorithm on the training images achieving
a mean IoU of 86.87% after 25 trials with 10 repetitions. We also ran the k-
medians clustering algorithm on the cropped training images achieving a mean
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Figure 6.2: (a) The mean IoU for 10 k-median runs with 9 clusters applied on the
IoU for all cropped training images (b) The 9 anchor boxes generated by the best
achieving run

IoU of 86.82% after 20 trials over 10 repetitions. In figure 6.1 (b) we observe the
different cluster shapes and sizes for the given the original images in our training
dataset. The original images are too large for the resources at hand since a single
image has a resolution of 1980 × 1080 pixels. As a result, the grid of generated
anchors becomes prohibitively large, forcing us to resize the images. The RetinaNet
was operational as we resized the images to a resolution of 990 × 540. However,
the bounding boxes became significantly smaller, causing the anchors to no longer
match the block shapes in our images. To work around this issue, we cropped the
images to cover the grasping region.

We used the anchor shapes shown in figure 6.2 (b) to guide our decision in
defining the optimal anchor shapes for the RetinaNet. We set the anchors for the
five pyramidal layers to {30, 53, 90, 100, 150} starting from the first to the last layer
respectively. We modified the aspect ratios setting them to {17 : 20, 1 : 1, 11 : 10}
based on the minimum and maximum aspect ratios for the 9 inferred anchors.
We did not modify the size factors, and maintained the same scales proposed by
Vaswani et al. [103] {20, 2

1
3 , 2

2
3}.

6.2 Backbones

For this set of experiments, we examine the influence of different backbones on the
RetinaNet’s outcome. The RetinaNet requires a ResNet backbone model for con-
structing the FPN. We provide a more more details on the FPN and its structure
in section 2.1.10. Although the ResNet with 50 layers is sufficient for detecting
objects, having deeper residual networks have shown improvement over their shal-
lower counterparts. We varied the backbone to observe the influence of deeper
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ResNet layers on the RetinaNet’s performance. For more details on the employed
ResNets and their layer structure, refer to table 2.4 in section 2.1.10.

6.2.1 Experimental setup

We use the properties defined for the base model. We use three different ResNets
and compare their weighted mean Average Precision (mAP). The Jaccard index
threshold for the mAP is set to 0.5 with non-maximum suppression applied to all
evaluations. We evaluate the RetinaNet network with ResNet 50, 101, and 152 as
a backbone. The experiment was repeated three times for each setup. We ran the
experiments for three days on an Nvidia GTX 1050 Ti graphics processing unit.

6.2.2 Results and discussion

ResNet 50 ResNet 101 ResNet 152*
0.8

0.82

0.84

0.86

0.88

0.9

0.92

backbone

m
ea

n 
av

er
ag

e 
pr

ec
is

io
n

Figure 6.3: The average mAP for three repetitions using different ResNet back-
bones

In figure 6.3, we show that the ResNet with 152 layers achieved the highest
mAP with a mean of 0.893 and a standard deviation of 0.0152 for all three repeti-
tions. The increase in precision occurs due to the residual connections between the
ResNet layers. Since each layer is responsible for learning the identity function,
the degradation problem is mitigated. More layers offer the network a larger range
of parameters to accurately estimate a mapping between the input and output.
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6.3 Analysis

We trained the RetinaNet with the optimal anchor properties as deduced in section
6.1.2 using ResNet152 as a backbone. All other hyperparameters matched the base
model’s hyperparameters. In table 6.2 we show the resulting mAP (with a IoU
threshold of 0.5 and non-maximum suppression) on the validation dataset for all
the classes individually. The neural model successfully learns to identify the objects
in our dataset, hence no further optimization was required for the RetinaNet.

Table 6.2: Individual classes with their mAP trained on the “Pick and Place”
dataset

Instances Class mAP Instances Class mAP

297 cube magenta 0.8664 255 prism magenta 0.9545

5355 cube green 0.9143 342 prism green 0.9547

2001 cube white 0.8884 69 prism white 0.5431

6132 cube red 0.9091 534 prism red 0.9627

4128 cube yellow 0.9277 342 prism yellow 0.9611

5718 cube gray 0.8928 423 prism gray 0.8782

1125 cube cyan 0.9514 381 prism cyan 0.9585

3783 cube blue 0.9367 276 prism blue 0.7556

mean average precision 0.9130
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Chapter 7

Experiment 3: FusionNet

The FusionNet is the cornerstone of this Thesis. Its ability to learn a good repre-
sentation based on the inputs branching from the RetinaNet and the Transformer
has a great influence on the final output. We implement the FusionNet as a simple
feed-forward network to combine the nodes branching from the preceding networks.

In section 4.3 we describe the FusionNet as a neural architecture relying solely
on the subnetworks branching from both modules. The number of nodes branch-
ing from both modules is denoted by Nn. The final layer creates an aggregated
representation of visual and linguistic features. The number of units for the output
layer is denoted by loutput. The output layer has a sigmoid activation, producing
the output joint angles and states of the robotic arm and gripper respectively.
We do not introduce any layers between the output layer and the concatenated
features from the modules to restrict the scope of our problem. Creating a deep
network composed of several layers might result in better learning. However, we
are mainly interested in observing the influence of intermediate representations on
our neural model, rather than adjusting the network for optimal performance. On
the other hand, we are also concerned with optimizing the network to a certain
degree that enables the network to perform the targeted task: grasping objects
and placing them elsewhere.

Based on the experiments conducted in chapter 5 and chapter 6, we acquired
the optimized hyperparameters for the Transformer as well as the RetinaNet. We
summarize the chosen hyperparameters for the Transformer in table 7.1 and the
RetinaNet in table 7.2.

Table 7.1: The optimized Transformer network hyperparameters

Pdrop Nh Nm da demb dff lseq w2vmod

0.15 4 4 12 50 256 200 sg

For the FusionNet base model, we use the synthesized datasets described in
chapter 3. We follow the training pipeline described in section 4.3.2, where one
of four (clean and noised) images chosen at random is fed as input to the vision
module, while one of four (clean and noised) sequences chosen at random is fed
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Chapter 7. Experiment 3: FusionNet

Table 7.2: The optimized RetinaNet hyperparameters

anchors lres backbone

number: 9
sizes: {30,53,90,100,150}
strides: {8,16,32,64,128}
ratios: {17:20, 1:1, 11:10}

scales: {20, 2
1
3 , 2

2
3}

990× 540 ResNet152

as input to the language translation module. The output values are scaled using
min-max normalization (described in section 4.3.2) limiting the joint angles and
their states to a range of 0 and 1.

Other hyperparameters describing the training procedure include the number
of training iterations, the batch size, and the optimization algorithm as well as its
properties. The number of training iterations is denoted by Nitr, and the batch size
is denoted by sbatch. The optimizer is denoted by opt with subscripts indicating its
properties where necessary. We schedule the learning rate optη to reduce on the
plateau of the FusionNet’s Mean Squared Error (MSE) loss. The learning rate is
reduced by a factor of 10 and checked every Nitr = 1k. If the loss has not imroved
for two checks in a row, the learning rate is reduced.

We summarize the hyperparameters for the FusionNet base model in table 7.3.

Table 7.3: The base FusionNet hyperparameters

Nitr sbatch opt optβ1 optβ2 optε optη Nn loutput

32k 1 adam 0.9 0.999 10−9 10−5 4 14

For the experiments to follow, the hyperparameters are assumed to default to
the base model’s properties unless otherwise stated. For a detailed description of
the network and the dataset properties, refer to section 4.3.

7.1 Ablation study

For this set of experiments, we perform an ablation study on the intermediate
representations of the FusionNet. The introduction of different outputs as auxiliary
tasks is hypothesized to improve the overall learning of all tasks as described in
section 2.1.12. We remove the intermediate representations to explore whether they
influenced the overall performance, specifically the precision of the joints angles
predicted by the network.
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7.1. Ablation study

7.1.1 Experimental setup

We apply the properties defined for the FusionNet base model. We ablate each
output branching from the modules independently and in combination with other
outputs. The FusionNet base model has four output layers, three of which are
intermediate representations. The output layer producing the joint angles cannot
be removed since it resolves the main objective of our task. The remaining output
layers are the Transformer classifier for decoding the translated sequence words,
the RetinaNet classifier for identifying the objects in the image, and finally the
RetinaNet regressor for localizing the objects. We experiment with all combina-
tions of ablated outputs resulting in a total of 8 combinations. Each combination
of outputs was repeated three times. We ran the experiments for 3 days on an
Nvidia TITAN X graphics processing unit.

7.1.2 Results and discussion
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Figure 7.1: The average FusionNet mean squared error for three repetitions per
ablated loss

The results of the ablation experiment indicate that learning all the weights
in concert increase (worsen) the MSE. Although multi-task learning is known to
improve the overall performance (refer to section 2.1.12), we observe the opposite.
Generally, this is an expected outcome when dealing with different loss functions
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since they operate on different scales. The overall loss of the neural network is
the summation of all losses combined. A loss function producing an error which
is significantly larger relative to other loss functions skews the gradients towards
improving the most erroneous objective.

Since all active losses are scaled by a factor of 1 and all inactive losses have
a loss weight of 0, we assume all losses to result in proportionate errors in this
experiment. The active losses are indicated by the mean of their error as shown
in figure 7.1. Inactive losses are indicated by an 6 symbol.

The L1 loss for the RetinaNet regression appears to be the most contributing
culprit to the worsening of the MSE loss used for performing the FusionNet regres-
sion. Discarding the L1 loss would be a viable option. However, we would also lose
any meaningful representation deduced by the RetinaNet object classifier. The
RetinaNet classification subnetwork would act as a regularizer without producing
interpretable outcomes.

The Transformer classification loss appears to have a negative influence on the
final objective. We cannot, however, discard the intermediate representation of
the Transformer. Considering that the Transformer is an auto-regressive model,
the decoded outputs are fed sequentially to the decoder as input during inference.
The model would be rendered unusable during inference without the Transformer
output layer given the nature of such an architecture. It is still possible, however,
to discard the Transformer output under the condition that RCL annotations are
parsed externally from the English language commands. Such non-trivial con-
tributor to the neural model’s functionality should not be preprocessed; else the
introduction of RCL to the training dataset is considered redundant. We would
have to ensure that the RCL parser generates accurate trees before feeding them
into the network, causing our model to lose its end-to-end capability.

We observe from figure 7.1 that maintaining the RetinaNet classification sub-
network with all other intermediate representations removed results in the lowest
(best) MSE with a mean of 0.0347 and a standard deviation of 0.0008 for all three
repetitions of the same setup. The model excluding all intermediate represen-
tations achieves the second-lowest MSE with a mean of 0.0348 and a standard
deviation of 0.0002 for all three repetitions of the same setup. The variance of the
lowest scoring model is significantly higher than the model without intermediate
representations, implying that given more repetition samples, the performance of
the best model might change. The two best scoring models cannot be used for
inference since they do not include the Transformer’s intermediate representation.
A model which can be used for inference, however, includes the Transformer’s in-
termediate representation only and achieves the third-lowest MSE with a mean
of 0.0351 and a standard deviation of 0.0004 for all three repetitions of the same
setup.
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7.2. Weighted Losses

7.2 Weighted Losses

For this set of experiments, we adjust the loss weights for all intermediate repre-
sentations. Based on our discussion in section 7.1.2, we have hypothesized that
the difference in loss scales caused a degradation in the results for the model with
intermediate representations compared to the model without intermediate repre-
sentations. To address this problem, we sought after altering the weights of each
loss to acquire an optimal combination. The loss weights are constant factors by
which each loss is multiplied before summing the various losses in a single model.

The choice of weights for the losses is challenging and setting them manually is
unfeasible. We approach the loss weight adjustment as an optimization problem.
Our goal is to minimize the MSE of the FusionNet given a set of weights. We would
need to adjust the weights of all four loss functions before computing the final loss
encompassing them. We use a Parzen tree estimator (PTE) [9] to optimize the
four weights.

7.2.1 Experimental setup

We apply the properties defined for the FusionNet base model. The PTE for
hyperparameter optimization receives the FusionNet MSE loss, the RetinaNet L1
loss, the RetinaNet Focal loss, and the Transformer CE loss as the priors. The PTE
runs the experiment and receives the FusionNet MSE as the evidence, generating
the next posteriors in the form of weights for each of the loss. We limit the range
of all four weights to a minimum of 0 (the loss is excluded from the training) and
a maximum of 10. The optimization process was repeated for 35 trials. Each
combination of weights was repeated three times. We ran the experiments for 14
days on an Nvidia GTX 1050 Ti graphics processing unit.

7.2.2 Results and discussion

We observed that several weight combinations resulting from the PTE optimiza-
tion outperform the model having all intermediate representations. As shown in
figure 7.2, the best scoring model resulting from the weight adjustment process
achieved a mean MSE of 0.0361 and a standard deviation of 0.0002 for all repe-
titions of the same setup. The best scoring model did not outperform the model
without intermediate representations. Since the loss weights for the experiment
conducted in section 7.1 were binary (0 when a loss was ablated and 1 otherwise),
we can directly compare the weights from that experiment to the current. The
best scoring model from section 7.1.2, has loss weight proportions similar to the
best scoring model in this experiment. This indicates the PTE hyperparameter
optimizer was able to find an ideal combination of loss weights. Discarding the
intermediate representation losses entirely is not feasible for our model, mainly
due to the Transformer’s autoregressive design. Altering the weights allows for a
more lenient compromise: we do not need to discard losses which have a negative
influence. Instead, we can reduce their contribution to the overall loss.
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Figure 7.2: The average FusionNet mean squared error for three repetitions per
weighted loss

Although the optimization of the weight losses does witness an overall improve-
ment over the uniformly weighted model with all intermediate representations, it
still does not achieve the desired outcome of outperforming the model without
intermediate representations. Destructive interference, a term coined by Zhao et
al. [110] describe a problem where different tasks drive the optimizer’s gradients in
opposing directions. We can deduce from the results shown in figure 7.1 and figure
7.2 that the Transformer classification loss and the RetinaNet regression loss are
acting against each other. The destructive interference could be a result of the
abstraction brought by the Transformer since it reduces the English language to
RCL commands, as opposed to the RetinaNet which provides specific locations of
all blocks in the image, including those which do not contribute to the overall task.

7.3 Model Simplification

For this set of experiments, we observe the influence of having different interme-
diate representations and modules. By reducing the vision module to a convo-
lutional model (section 2.1.7) instead of the deep RetinaNet which is currently
used, we examine whether a complex object detection architecture was necessary
for the functionality of the FusionNet. We implement a simple Convolutional
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7.3. Model Simplification

Neural Network (CNN) composed of two-dimensional convolutional layers. The
structure of the CNN used for our experiment follows a CNN designed by Kerzel
and Wermter [50]. The first convolutional layer has 16 filters with a kernel size of
3 × 3 and a ReLU activation. A second convolutional layer is added with similar
properties with the only difference being the kernel size, which is 4× 4 instead. A
maximum pooling layer follows each of the two convolutional layers. The weights
are randomly initialized, sampled from a uniform distribution and scaled using the
method proposed by Glorot et al. [31]. We eventually reshape the output to the
size of the FusionNet nodes. Note that the intermediate representations branch-
ing from the vision module are no longer available. We can fairly compare the
performance of this network with the base FusionNet model having the two inter-
mediate representations belonging to the RetinaNet removed. For the language
related task, we do not replace the Transformer with any other network. Instead,
we set the target sequence to the English language, matching the source sequence.
This approach turns the Transformer into an autoencoder. Translating to the
same language is a simplified task as opposed to translating from English to RCL,
and should provide us with an indicator as to whether RCL as an intermediate
representation was necessary for our primary task.

7.3.1 Experimental setup

We apply the properties defined for the FusionNet base model. For one set of exper-
iments, we replace the RetinaNet with the simple CNN and compare the FusionNet
MSE resulting from the alteration. The RetinaNet regression and classification in-
termediate representations are discarded from the base FusionNet model to create
a fair comparison. For another set of experiments, we compare the FusionNet
performance having English language commands as target sequences with RCL as
target sequences. Each setup was repeated three times. We ran the experiments
for 2 days on an Nvidia GTX 1050 Ti graphics processing unit.

7.3.2 Results and discussion

In figure 7.3, we observed that the FusionNet with a CNN as a visual module
achieves an MSE with a mean of 0.0356 and a standard deviation of 0.004. Com-
pared to our previous results, the RetinaNet variant with intermediate representa-
tions excluded achieves a mean of 0.0351 and a standard deviation of 0.00136. We
conclude that the RetinaNet outperforms the CNN variant. Although the Fusion-
Net base model outperforms the CNN variant, we have to also consider the high
computational overhead introduced by the RetinaNet. Optimizing the CNN might
reap better results, but our experiments in this domain were not comprehensive
since it goes beyond our research question.

In figure 7.4 we show a comparison between having English and RCL as a target
sequence. For the full FusionNet with all losses uniformly weighted, we acquire an
MSE of 0.0376±0.00415 for the English language as a target and 0.0372±0.00191
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Figure 7.3: The average FusionNet mean squared error for three repetitions of two
different visual modules

for RCL as a target over all repetitions. We experimented again with the Trans-
former loss excluded and acquired an MSE of 0.0374 ± 0.00163 for the English
language as a target, and 0.035 ± 0.0007 for RCL as a target over all repetitions.
We observe that RCL outperforms English as a target for the two variants. We
hypothesize that RCL provides a suitable intermediate representation of language
for our purpose, adding structure to an otherwise unstructured language. RCL
sequences follow an organized, repetitive pattern, which we hypothesize to be the
reason behind the improved performance since fewer features are needed to distin-
guish between sequences.

7.4 Nodes

For this set of experiments, we explore the influence of varying the number of
nodes on the network performance. By increasing the number of nodes, we do not
add more layers of abstraction, instead, we widen the layers connecting the vision
and language translation modules, expanding the size of the bottleneck between
the FusionNet and its modalities.
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Figure 7.4: The average FusionNet mean squared error for three repetitions per
translation target sequence

7.4.1 Experimental setup

We use the properties defined for the FusionNet base model. We examine the influ-
ence of Nm by changing its value between {4, 6, 8, 16, 20, 25, 32}. All intermediate
representation losses were uniformly weighted. The experiment was repeated three
times for each setup. We ran the experiments for 9 days on an Nvidia GTX 1050
Ti graphics processing unit.

7.4.2 Results and discussion

In figure 7.5, we show the different nodes and their resulting MSE. With 16 nodes
connecting the modules to the FusionNet, the model achieves the lowest (best)
MSE with a mean of 0.0363 and a standard deviation of 0.0006. The size of the
network increases significantly since we connect more units to the FusionNet, and
were unable to exceed the 32 nodes. We notice however that the MSE worsens
as we increase the nodes beyond 16, hence increasing the number of nodes even
further is unnecessary. Having a large number of nodes encourages the neural
network to overfit, causing the validation loss to increase when too many units are
available.
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Figure 7.5: The average FusionNet mean squared error for three repetitions per
node number

7.5 Analysis

We trained the FusionNet with hyperparameters matching those of the best models
as concluded through the experiments described in this chapter. Based on our
observations from section 7.2.1, we set the FusionNet regression weight to 6.82,
the Transformer classification weight to 0.23, the RetinaNet classification weight
to 5.71, and the RetinaNet regression weight to 0.38. According to the experiments
performed in section 7.4.2, we set Nm = 16. Since the Transformer output is crucial
for the functionality of the model, it would take a prohibitively long time to achieve
any results during inference given the low weight assigned to the Transformer loss.
We overcome this issue by transferring the weights from the model trained in
section 5.4 to the Transformer model within the FusionNet. We trained the model
for 60k iterations with a batch size of 1. All other hyperparameters matched the
FusionNet base model’s hyperparameters.

In table 7.4 we observe that the RetinaNet performs significantly worse than
in section 6.3. This is mainly due to the low loss weight assigned to it, slowing
down the learning. By running the experiment for more iterations, the RetinaNet
is likely to achieve better results, however, we might risk overfitting on other tasks.

We tested the model on the simulated images extracted through the method
described in section 3.3.3. We observe that the model has not yet converged,
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7.5. Analysis

Table 7.4: Results of the optimized FusionNet

Output Train Valid. Test

FusionNet regression (MSE) 0.0286 0.0270 0.0276

RetinaNet regression (L1) 0.9291 0.6135 1.9374

RetinaNet classification (FL) 0.1961 0.3091 1.0649

Transformer classification (CE) 0.0589 0.0757 0.0789

RetinaNet (mAP) - 0.3654 0.0759

Transformer accuracy (%) 0.9791 0.9741 0.9726

given that the training MSE loss is still higher in value than both the testing
and validation. Due to the prohibitively long training time, we were unable to
conduct the experiment until the model converged. We resumed to measure the
accuracy of the model on the simulator. The robot’s arm was about 10◦ away from
the targeted joint angles. The initial joint angles were approximated by a 3.45◦

precision whereas the final joints were significantly more erroneous being 16.73◦

off target on all 485 scenes. We point out that the final joint angle prediction is a
much harder problem to solve, since the robot has no visual input to rely on and
has to predict the next action solely based on the command and the initial image.
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Chapter 8

Conclusion and Future Work

In this Thesis, we presented a tailored synthetic task for examining the influence of
intermediate representations on a multimodal neural network. The task involved
commanding a robot to grasp objects and relocate them using natural language.
The robot would receive two inputs, one being the image with the objects of
interest displayed on a table, the other being the natural language command.
We expanded the Extend Train Robots (ETR) dataset by creating augmented
images with computer-generated blocks based on the properties provided by the
ETR. We also designed a simulator for injecting missing information related to the
mechanical movement of the robot.

To examine whether intermediate representations are necessary for performing
the task, we designed a novel neural architecture combining the RetinaNet and the
Transformer. The RetinaNet was used for detecting objects found in the images,
whereas the Transformer was used to translate the natural language command to
a tree-structured language know as the Robot Command Language (RCL). The
outputs branching from these networks form what we refer to as intermediate repre-
sentations. We combined the two networks through intermediate fusion by merging
their representations to learn motor actions. We began our study by optimizing
the Transformer and the RetinaNet in order to avoid errors accumulating due to
suboptimal design decisions. We found both the RetinaNet and the Transformer
to perform the tasks at hand with agreeable precision as per our quantitative and
qualitative analysis. Next, we examined the necessity of the three intermediate
representations, two of which are associated with the RetinaNet classification and
regression branches for detecting blocks in images along with their location. The
last intermediate representation is associated with the Transformer classification
branch for decoding RCL commands given natural language.

On ablating all combinations of intermediate representations, we inferred that
the neural network without intermediate representations outperformed the neural
network with all intermediate representations employed. We hypothesized that
the reduction in performance was due to the varying scales of the errors associ-
ated with the losses belonging to the different intermediate representations. To
counteract this negative influence, we employed a Bayesian-based hyperparameter
optimizer to weigh the different losses in the model for harvesting less erroneous
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results when achieving our main motor-related task. We were able to achieve
better results with weighted losses compared to the unweighted network with all
intermediate representations. The model with the best combination of weighted
losses, however, did not outperform the model without intermediate representa-
tions. Although the model without intermediate representations outperformed a
majority of the intermediate representation combinations, we observed that the
Focal loss used for the RetinaNet classification has a positive influence on the fu-
sion network’s performance. The Transformer’s cross-entropy loss tends to reduce
the model’s precision as well. However, we cannot discard the Transformer’s out-
put. Considering that the Transformer is an autoregressive model, discarding the
decoded RCL annotations would render our fusion model unusable for inference.

To examine whether our choice of RCL as an intermediate representation was
justifiable, we set the Transformer to translate natural language sequences to them-
selves. This simple modification alters the objective of the Transformer, allowing
it to act as an autoencoder. We observed that although decoding the sequences to
themselves is a more straightforward task than translating to a different language,
RCL as output improves the performance of our fusion network. This indicates
that RCL as an intermediate representation was well suited for the task as opposed
to merely modeling the natural language commands. We also examined whether
a much simpler network instead of the RetinaNet would reap better outcomes. A
simple convolutional neural network did not outperform the sophisticated Reti-
naNet model when performing our targeted task. We observed that the number of
nodes connecting the RetinaNet and the Transformer to our fusion network plays a
role in affecting the model’s performance. Increasing the nodes implies a widening
in the network, and consequently, an expansion to the error surface. Although
increasing the number of nodes should allow more features to be detected, the
possibility of reaching an optimal solution reduces significantly. We increased the
nodes and observed a proportional improvement in the results up to a certain point
until the results degraded as we exceeded a given number of nodes.

Based on the optimization steps followed, we trained the model using the best
hyperparameters acquired. We tested the model in the simulated environment and
trained on real images with augmented blocks atop a virtual surface. We observed
that a majority of the failed grasps were resulting from the final motor targets.
The initial motor targets were approximated more accurately during inference than
the final targets. We hypothesized that the failure was due to the model being
unaware of the changes between the initial and final steps. Since our model does
not support any form of servoing, the robot is oblivious to the changes resulting
from any environmental influences. Adding servoing capabilities, such as streaming
images during grasping and updating the joint coordinates of a robotic arm could
improve the precision of our model. Other approaches involving reinforcement
learning might need to be integrated with our model for achieving such a goal.
Another interesting aspect to address is the choice of intermediate representations.
We have not explored whether intermediate representations for learning different
tasks are more beneficial to our network. Although we have shown that RCL
as an intermediate representation was more suited than natural language as an
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intermediate representation for our task, we have not examined other structured
languages. A simpler or more abstract description of the features of interest in the
natural language commands might result in improved performance.

Expanding the fusion network to support more layers could result in a lower
error, hence would be a viable option to explore. Attention between the features
resulting from the vision and translation modalities could also improve the results
significantly. The classification output resulting from the RetinaNet’s intermediate
representation describes the entities resulting from the Transformer’s intermediate
representation. By attending to the similarities between the two features, the
model might infer patterns suited for focusing on the objects of interest only. We
have observed that our approach in weighing the losses presented an improvement
over uniformly weighted losses. This rather näıve approach relies heavily on the
weights of the losses involved without considering the correlations between the
tasks. A dynamic approach such that the homoscedastic uncertainty between the
tasks might be well suited for our objective, and will be explored in future work.
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Appendix A

Experiment 3: Additional Data

Table A.1: Weighted loss experiment results showing the mean and standard de-
viation of three trials per weight combination

RetinaNet
regression

weight

RetinaNet
classification

weight

Transformer
classification

weight

FusionNet
regression

weight

FusionNet
train.

loss (MSE)

FusionNet
valid.

loss (MSE)

1.0 1.0 1.0 1.0 0.0068 ± 0.0024 0.0373 ± 0.0002

8.86 9.23 6.63 8.59 0.0080 ± 0.0012 0.0370 ± 0.0005

9.54 5.8 6.36 7.27 0.0094 ± 0.0027 0.0370 ± 0.0005

1.34 8.18 5.39 5.86 0.0084 ± 0.0025 0.0366 ± 0.0007

9.11 0.18 2.4 9.41 0.0109 ± 0.0060 0.0376 ± 0.0002

7.61 6.95 6.55 8.49 0.0102 ± 0.0029 0.0378 ± 0.0005

6.54 7.72 6.09 9.81 0.0101 ± 0.0025 0.0374 ± 0.0006

4.15 2.11 3.49 5.54 0.0081 ± 0.0079 0.0374 ± 0.0007

9.35 8.2 5.9 6.93 0.0080 ± 0.0012 0.0375 ± 0.0002

9.61 5.95 4.39 2.37 0.0127 ± 0.0036 0.0377 ± 0.0008

7.81 7.14 1.38 5.32 0.0101 ± 0.0023 0.0371 ± 0.0004

7.29 1.8 9.93 1.88 0.0083 ± 0.0056 0.0377 ± 0.0003

8.54 6.27 3.09 7.8 0.0083 ± 0.0027 0.0379 ± 0.0006

9.89 7.76 8.42 8.02 0.0099 ± 0.0008 0.0378 ± 0.0005

5.4 8.34 6.57 6.37 0.0106 ± 0.0037 0.0376 ± 0.0012

0.65 8.88 5.02 7.25 0.0061 ± 0.0027 0.0365 ± 0.0003

5.75 4.22 8.5 7.27 0.0093 ± 0.0051 0.0375 ± 0.0009

6.26 6.84 4.1 8.06 0.0076 ± 0.0014 0.0378 ± 0.0010

8.07 4.68 2.12 5.2 0.0107 ± 0.0041 0.0378 ± 0.0013

0.0 0.0 0.0 1.0 0.0041 ± 0.0031 0.0348 ± 0.0002

9.98 4.9 9.04 4.49 0.0083 ± 0.0042 0.0377 ± 0.0002

2.21 4.55 3.71 6.09 0.0082 ± 0.0022 0.0364 ± 0.0007

7.1 3.64 9.21 8.57 0.0090 ± 0.0013 0.0375 ± 0.0004

6.07 5.41 7.29 4.14 0.0074 ± 0.0032 0.0379 ± 0.0005

8.51 2.92 4.56 6.45 0.0082 ± 0.0005 0.0366 ± 0.0007

4.75 9.8 7.93 3.18 0.0073 ± 0.0024 0.0380 ± 0.0006

5.59 5.36 7.69 10.0 0.0091 ± 0.0055 0.0366 ± 0.0002

8.14 2.66 8.33 3.91 0.0091 ± 0.0048 0.0372 ± 0.0013

9.18 0.85 9.72 0.89 0.0095 ± 0.0052 0.0375 ± 0.0005

10.0 3.81 3.93 4.7 0.0096 ± 0.0050 0.0380 ± 0.0007

0.38 5.71 0.23 6.82 0.0070 ± 0.0027 0.0361 ± 0.0002

8.6 7.58 4.64 8.88 0.0091 ± 0.0040 0.0375 ± 0.0009

7.02 6.28 5.31 7.57 0.0073 ± 0.0027 0.0367 ± 0.0006

3.74 6.45 6.97 6.66 0.0068 ± 0.0041 0.0371 ± 0.0003

6.06 8.45 3.82 2.63 0.0025 ± 0.0000 0.0367 ± 0.0000
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habe und die eingereichte schriftliche Fassung der auf dem elektronischen Speicher-
medium entspricht.

Ort, Datum Unterschrift

105





Erklärung zur Veröffentlichung
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