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HRI-Free: Cognitive Robotic Simulation for Evaluating Embodied
Social Attention Models

Fares Abawi† and Di Fu‡

Abstract— Scaling social robot studies is constrained due
to the need for human interaction, making large participant
recruitment impractical. Robotics simulators help mitigate this
limitation but generally lack the realism to accurately simulate
social cues. We introduce a cognitive robotic simulation scheme
to evaluate social attention models in physical environments.
By projecting ground-truth priority maps to a simulated
environment, we can directly compare predicted maps using
common saliency metrics. Using the iCub robot, we assess
a dynamic scanpath model that predicts attention targets,
simulating human scanpaths. Evaluations with the FindWho
and MVVA datasets show strong correlations between robot-
captured metrics and direct-streamed video metrics. Our results
indicate robustness of the social attention model to noise and
real-world conditions, suggesting its practical usability for pre-
dicting personalized scanpaths in real settings. This approach
reduces the need for extensive human-robot interaction studies
in the early stages of study design, enabling the scalability and
reproducibility of social robot evaluations.

I. INTRODUCTION

Scaling social robot studies is challenging since most
depend on human perception arising from interactions with
the robots. Recruiting a large number of human participants
to conduct these studies is generally impractical in terms
of time and resource investment. Robotics simulators have
emerged as a solution to the scaling problem in the social
robotics sphere. However, although the physics and aesthetic
realism of robotics simulators have been advancing rapidly,
the fidelity of social cue (socialness) simulation is still
limited. Automating the testing of embodied social models,
like social navigation, is made possible with large generative
language and multimodal models. Such approaches rely on
simulating social behavior in the form of abstract action
primitives using the generative models [3]. However, the
level of abstraction and quality of generated outputs could
misrepresent real-world conditions under which robots oper-
ate, potentially leading to inaccurate and unsafe behavior [4].

Moreover, the spectrum of social cues displayed by
humans during social interactions is broad and context-
dependent. These cues include facial expressions, gaze direc-
tion, and others [5]. Social cues are especially relevant when
evaluating social attention models. Social attention—saliency
and scanpath prediction—models predict human gaze by
integrating social cues. To address the limitation of social cue
simulation, we present a cognitive robotic simulation scheme
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(a) MVVA Evaluation
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Fig. 1. The iCub robot executing the evaluation pipeline based on the (a)
FindWho [1] dataset allowing eye for movements only, and (b) MVVA [2]
dataset allowing for head and eye movements. The physical robot (bottom
right) observes clips (left) and predicts a priority map (top right) according
to the observer under test. The ground-truth priority map is projected to a
monitor in simulation (center right), after which the projected ground-truth
and predicted maps are compared in terms of the NSS and AUCJ metrics.

by matching the observations in the physical environment
onto a simulated one. Using the iCub robot, we evaluate a
dynamic scanpath model that predicts attention targets on the
MVVA [2] and FindWho [1] datasets, simulating human-like
scanpaths, as shown in Figure 1.

We ensure that we maintain similarity to the human data
collection setup while accommodating technical limitations.
Additionally, we assume that the physical environment pro-
vides a means for allowing the robot to perceive the pre-
recorded stimuli. Our approach, although tailored specifically
for social attention models, can be applied to other social
tasks with varying degrees of complexity, such as behavior
mirroring [6] and social cueing [7].

II. RELATED WORK

In social robotics, developing appropriate embodied social
attention models contributes significantly to enabling robots
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Fig. 2. The scanpath control pipeline for actuating the robot. Assuming the current timestep at ⟨t′⟩ : 0, we show the output availability for each component
at the relative timestep. Video and audio sampling are performed in parallel, blocking all other components to avoid interrupting the real-time capture. At
any time point, the video and audio sampling is two timesteps ahead of the controller that actuates the robot in physical and simulated environments.

to display human-like social behaviors. These models aim
to replicate human attention mechanisms, allowing robots to
engage in more realistic and effective social interactions [8].

One of the main challenges is the collection of naturalistic
human-robot interaction data. Traditionally, this has been
accomplished through labor-intensive studies involving mul-
tiple participants. Human data are typically used to train the
attention model [9] or serve as ground-truth for evaluating
the model’s performance [7], [10]. However, the scalability
of such approaches is limited. When algorithms require
modification, researchers often have to re-design and repeat
the study with human participants, rendering the evaluation
process inefficient and difficult to scale. To address this issue,
our study draws on methods from social navigation [11],
[12], using robotics simulators to generate synthetic data
for training and evaluating social attention models. Contrary
to such approaches where the simulator is used to generate
synthetic data, our approach relies on replicating the same
environment in digital and physical form. The simulator
projects the sample ground-truth onto physically identical
locations as they appear in the real environment, allowing
for the evaluation of the predictions in the physical world.

Additionally, replicating how humans prioritize visual and
auditory information during social interactions to predict
gaze behaviors [10] remains a challenge. Fu et al. [7] develop
an audiovisual saliency prediction model that can resolve
modality incongruencies and attend selectively according to
the task. This work provides the research basis of our current
robotic simulation scheme.

Another challenge is detecting various social cues and
integrating them during attention allocation [13]. Social cues
such as facial expressions, gaze direction, and body language
may impact social interaction differently [14]. In previous
work, Abawi et al. [15] developed a personalized attention
model that integrates several of such cues, enabling the
prediction of individuals’ scanpaths in social settings. We
adopt this model in our current work, demonstrating the ap-
plicability of our cognitive robotic simulation framework for
evaluating such social attention models in physical settings,
without requiring humans to assess the model’s performance.

III. METHODS

We evaluate a dynamic scanpath prediction model [15]
designed to infer priority maps, highlighting an individual
observer’s attention target. The peak of the priority map
defines the gaze target. Actuating a robot to gaze toward
that target, as well as the targets to follow in sequence,
would effectively simulate human scanpaths. Our approach
involves the projection of ground-truth priority maps to a
simulated environment. The map is projected to a monitor
within the simulator at a distance from the simulated robot,
approximately equivalent to the distance of a real monitor
from the physical robot. By controlling the gaze of the
simulated robot to match the physical robot, the view of the
ground-truth priority map resembles the view of the physical
robot’s predicted map. This allows us to compare the ground-
truth to the predicted map using saliency metrics [16].

A. Cognitive Robotic Simulation Scheme

An overview of our robot control pipeline is shown in
Figure 2. The pipeline defines the steps taken to evaluate
our unified scanpath models in real-time. The components
of the pipeline are detailed as follows:

1) Audio and Video Sampling: Initially, the videos are
played on the physical monitor in one-second chunks and
are paused until the pipeline repeats. During playback, the
iCub robot facing the monitor captures a sequence of im-
ages at 10 FPS and audio at 16 kHz. The video playback
is executed as a separate process that awaits a signal to
resume. This signal is transmitted before the iCub begins
capturing one-second chunks of audiovisual frames using its
integrated sensors. The communication between the sampling
and playback processes is handled by Wrapyfi [17]. This step
is performed in a blocking manner to avoid interruptions to
the capturing process.

2) Social Cue Detection: We utilize the social cue detec-
tors proposed by Abawi et al. [15]. This includes the facial
expression [18] and gaze estimation [19] cue modalities,
along with the saliency prediction [20] modality. The cues
are detected, transformed, and represented following the
procedure detailed by Abawi et al. [21]. The cue detectors



extract the representations sequentially and maintain frames
and chunks from previously sampled video and audio. As
long as the same video is running, the frames are queued and
processed by the detectors according to their context lengths.
At the beginning of a video, the frames collected are not
sufficient to cover the context length of all detection models.
For instance, the DAVE saliency prediction model requires
16 video frames, however, our samplers return 10 frames
only. The remaining 6 frames would be padded with the last
acquired frame and shifted as more samples are collected. At
every timestep, the detected representations are propagated to
the output buffers as single 2D representations per modality.

3) Fixation History: The fixation history is the sequence
of fixations that precede the one being predicted by the
sequential integration model [15] in the form of a priority
map. The fixation history serves the purpose of providing
context to our model, in order to inform it on the observer
priority map to be predicted. Moreover, the next fixation
depends on the previous fixation positions. Without repre-
senting the previous scanpath—sequence of fixations—the
predictions would be arbitrary. The fixation history module
extracts the ground-truth priority map for a given timestep
t′ and propagates it to the output buffers.

4) Output Buffers: Output buffers represent all queues
storing the latest state representations for each modality,
agnostic to the input sampling mechanism. At every timestep
t′, each modality-specific buffer is queued with a single 2D
feature map. The maximum size for all queues is governed
by the context size of the sequential integration model.

5) Sequential Integration: We use the scanpath model
developed in [15]. We employ two models trained with the
FindWho [1] and MVVA [2] observer data. More specifi-
cally, we evaluate the unified integration model. The unified
integration model is similar in structure to the sequential
integration GASP [21] variant, additionally extended with
the fixation history module. The Directed Attention Module
(DAM) is trained on the fixation density maps of a group
of observers, whereas the Late Attentive Recurrent Gated
Multimodal Unit (LARGMU) is trained on the priority maps
of all observers individually.

6) Peak Detection and Coordinate Conversion: The social
cue detectors and saliency predictor extract features for the
previously acquired audiovisual frames during the auditory
and visual acquisition phase. Following the detection and
generation of spatiotemporal maps, the unified scanpath
model predicts a priority map m̂⟨t⟩ : Z2 → [0, 1] for a
given frame. The peak is registered in pixel coordinates and
remapped to scalar values within the range of ∈ {−1, 1} in
both x and y axes, such that:

p̂x,y = −1 +
2 · argmaxx,y m̂(x, y)

m̂X,Y
, (1)

where p̂x,y represents the peak location in the normalized
range and m̂X,Y are the width and height of the predicted
priority map in pixels. We actuate the robot to look toward
the peak. For simplicity, we assume the camera view to be
independent of its location relative to the playback monitor.

For all experiments, we control the head and eye movements
of the iCub, disregarding vergence effects, microsaccades,
and fixation duration. The positions are expressed in Carte-
sian coordinates, assuming the monitor to be at a distance
of ∼ δz from the image plane. We scale p̂x,y by a factor of
αx,y = {.35, .3} to limit the viewing range of the eyes. We
then convert the Cartesian to spherical coordinates:

p̂ϕ = atan

(
αy · p̂y

δz

)
,

p̂θ = atan

(
αx · p̂x√

δ 2
z + (αy · p̂y)2

)
,

(2)

where p̂ϕ and p̂θ are the pitch and yaw angles respectively.
These angles are used to actuate the eyes of the iCub such
that they tilt ∼24◦ and pan ∼27◦ at most1. On extracting
the output priority map from the scanpath prediction model,
the peak of the priority map is registered as the target
of gaze. The robot captures the images and audio from
the environment, applies the scanpath prediction model to
the captured stimuli, and directs the robot’s gaze toward
the peak. Simultaneously, the ground-truth priority map is
projected to a monitor within a simulated environment as
shown in Figure 3, and the peak of that map is detected
relative to the monitor. Finally, the predicted priority map is
evaluated against the simulator-projected ground-truth map.

7) Robot Gaze Controller: The iCub [22] robot is used in
all experiments for evaluating performance on the MVVA [2]
and FindWho [1] datasets as shown in Figure 1. The MVVA
data collection procedure does not enforce fixing the head
pose. To accommodate the influence of the head rotation,
we utilize the iKin [23] library. More specifically, we aim to
evaluate gaze shifts by relying on the iCub robot’s vestibulo-
ocular reflex functionality to compensate for the head move-
ments resulting from fixating on a target location. The
integration of such an effect is necessary due to its impact on
stimuli capture as well as the fixations following the current
at any given timestep. For the FindWho evaluation trials,
the head pose is fixed such that the iCub’s line-of-sight is
perpendicular to the monitor. We, therefore, control the eyes
directly by specifying the target of gaze as the peak of the
predicted priority map in the visible pixel space.

B. Experimental Design

1) Mapping Prediction to Ground-Truth Gaze: Videos
displayed on a monitor would naturally require a different
ground-truth mapping methodology to streamed video com-
parisons. To circumvent the ambiguity in mapping fixation
positions, we project the ground-truth density map onto a
monitor within the iCub simulator. The iCub robot was
chosen since it is capable of moving both its head and
eyes, with cameras attached to its pupils and microphones
mounted on both its ears. This structure resembles the
anatomy of a human, enabling us to assimilate the human
data collection setup as closely as possible. In Figure 1 we

1The iCub can tilt and pan its eyes in ranges of ∈ {−40◦, 40◦} and
∈ {−45◦, 45◦} respectively.
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Fig. 3. The videos are played back in segments on a monitor facing the iCub robot. (A) Audio chunks and video frames are captured through the iCub’s
sensors. The social cue and saliency features are represented as 2D maps and propagated to the unified scanpath model, which predicts a priority map. The
(B) external view of the physical environment (left) and the region of capture (right) upon which the priority map is inferred, and (C) captured camera
view from the simulated environment (right), in which the ground-truth priority map is projected on a virtual monitor followed by color-correction and
evaluation against the inferred map are shown.

show the social attention model employed on the physical
iCub robot. Knowing the robot’s distance from the monitor
within the physical environment, we mirror the head and
eye movements of the physical robot within the simulator,
providing an approximate position of the intended fixation.

We adjust the ground-truth priority maps to match the
size of the monitor in the physical environment from the
perspective of the observer. Given the distance from the mon-
itor δz during the data collection phase, we can approximate
the width and height of the projected ground-truth map by
repositioning the simulated monitor at a distance of δz from
the robot. Next, the simulated monitor is resized to match
the size of the physical one and the view from the robot’s
camera captured. Finally, the simulated capture is compared
to the predicted priority map from the physical environment.

2) Experimental Setup: In this study, we utilized the
pretrained unified scanpath model with the best perfor-
mance [15]: The integration architecture (DAM + LARGMU,
context size T ′ = 10), yielded the best results for a majority
of the experiments on both the MVVA [2] and FindWho [1]
datasets. Given the procedural differences in the collection
of the MVVA and FindWho datasets, we considered the
properties shown in Table I. However, accounting for the
robot’s visual field and camera resolution, we did not fully
align our setup with those properties. For evaluating the
MVVA dataset, the corresponding integration model was
deployed on the robot. We placed the robot at a distance of
∼ 30 cm from a 23-inch monitor. For the FindWho dataset
evaluation, we moved the robot further from the monitor
to a distance of ∼ 35 cm, and deployed the integration
variant of our scanpath prediction model, trained on the
FindWho dataset. In alignment with the datasets’ collection
protocols, we set the robot to move its eyes only when
evaluating the FindWho dataset. As for the MVVA dataset

TABLE I
EXPERIMENTAL SETUP AND DATASET PROPERTIES.

Property MVVA [2] FindWho [1]
Distance to monitor ∼ 55 cm ∼ 60 cm
Monitor resolution 1280×720 px 1280×720 px

(16:9) (16:9)
Monitor size 23-inch 23.8-inch

Video duration 10-30s ∼ 20s
Frames per second 30 25

Audio channels Stereo Monaural
Head-pose Free Fixed

No. training videos 210 (70%) 46 (70%)
No. validation videos 30 (10%) -

No. test videos 60 (20%) 19 (30%)
No. observers 34 (1 excl.) 39

evaluation, we used the iKin [23] library to direct the robot’s
gaze shift through head and eye movements. Both datasets
were evaluated separately. The stimuli videos were replayed
a number of times equivalent to the number of individual
observers. For each observer, the fixation history consisted of
the preceding ground-truth fixations on observing the specific
video frames and audio chunk. The videos were played back
at 1 s intervals and captured using the iCub robot’s left
camera. Audio was played back also for 1 s intervals through
on-ear headphones, placed on the iCub robot’s microphones.

During the physical evaluation, the social cue detectors
and the GASP model were distributed among two NVIDIA
GeForce GTX 970 GPUs with a total of 8GB VRAM and
32GB RAM. Experiments on the physical robot, evaluating
all observers individually required ∼13 hours in total for the
FindWho dataset (39 observers, 19 videos), and ∼ 42 hours
for the MVVA dataset (34 observers, 60 videos).

Videos in the MVVA [2] and FindWho [1] datasets are
played on a monitor facing the iCub robot [22]. These
datasets are composed of social videos that were watched



under the free-viewing condition [24, p. 26] by multiple
human observers, whose eye movements were collected
using an eye tracker. These datasets contain social videos,
making them suitable for social attention model evaluation.
Moreover, these datasets explicitly label the samples by the
observer, allowing us to compare the model’s performance
across individuals. The robot captures those videos with
its camera and microphones. Following capture, the social
cue and saliency prediction modalities are executed, and
their representations are generated. These representations
are queued in the output buffer along with the fixation
history—the preceding fixations of the observer under test.
Concurrently, the sequential integration model operates on
the representations of previous timesteps and predicts an
individual observer’s priority map. The predicted map is
propagated to the peak detector. The peak coordinates are
converted to yaw and pitch, which are then used to actu-
ate the physical and simulated robot simultaneously using
YARP [25]. The ground-truth priority map for the last video
frame of a given context is channeled to the simulated
monitor as shown in Figure 3. Finally, the metrics are
computed, and the pipeline is looped until all videos in the
evaluation set are completed.

IV. RESULTS

Pearson correlation analyses were conducted to assess
the alignment between robot-captured metrics and direct-
streamed video metrics over one-step and multi-step-ahead
time intervals. The robotic experiments were only conducted
for one-step-ahead predictions. Multi-step-ahead predictions
refer to evaluations extending over multiple future steps.
This describes feeding the predicted priority map back into
the fixation history module as future samples are collected,
where every additional step into the future is denoted by
t′ + N . Here, t′ refers to one-step-ahead prediction and N
to the number of additional steps ahead.

We evaluated the FindWho [2] dataset on the robot,
and measured its performance in terms of the NSS and
AUCJ metrics against one-step-ahead and multi-step-ahead
streamed video predictions as shown in Figure 4. For the NSS
metric, moderate correlations were observed between the
robot-captured and direct-streamed videos (r = 0.498), which
decreased with the addition of the steps ahead (r = 0.442 at
t′ +1, r = 0.401 at t′ +2, r = 0.279 at t′ +3, and r = 0.336
at t′ + 4). In contrast, the AUCJ metric exhibited a weak
initial correlation (r = 0.165) that turned negative for future
predictions (r = -0.142 at t′+1 through r = -0.098 at t′+4),
indicating a divergence in attention distribution metrics with
step-ahead increments.

We evaluated the MVVA [2] dataset on the robot, and mea-
sured its performance in terms of the NSS and AUCJ metrics
against one-step-ahead and multi-step-ahead streamed video
predictions as shown in Figure 5. For the NSS metric, strong
correlations were observed between the robot-captured and
direct-streamed videos, starting at r = 0.76 for one-step-
ahead, with a gradual decrease through the steps ahead
(r = 0.74 at t′+1, r = 0.68 at t′+2, and r = 0.63 at t′+3). For
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Fig. 4. Robot one-step-ahead predictions using the Unified late integration
model (DAM + LARGMU, context size T ′ = 10) trained on the Find-
Who [1] dataset, compared to the streamed multi-step-ahead predictions in
terms of the (a) NSS and (b) AUCJ metrics. The angular axis indicates the
observer identifier, whereas the radial axis shows the metric score.

the AUCJ metric, a moderate initial correlation (r = 0.48) was
observed, which gradually increased for future predictions
(r = 0.52 at t′+1, r = 0.57 at t′+2, and r = 0.59, t′+3, and
r = 0.59 at t′ + 4), suggesting a strengthening of alignment
in visual attention metrics with step-ahead increments.

V. DISCUSSION

Expectedly, the robot scored lower than the streamed video
evaluation in terms of the NSS and AUCJ metric scores. We
found that the observer scores were correlated for streamed
and robot videos, when evaluating on the MVVA dataset.
The correlation was weaker on the FindWho dataset, even
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Fig. 5. Robot one-step-ahead predictions using the Unified late integration
model (DAM + LARGMU, context size T ′ = 10) trained on the MVVA [2]
dataset, compared to the streamed multi-step-ahead predictions in terms of
the (a) NSS and (b) AUCJ metrics. The angular axis indicates the observer
identifier, whereas the radial axis shows the metric score.

tending towards negative values for the AUCJ correlation, as
the number of steps ahead were increased. The AUCJ metric
is sensitive to false-positive predictions. When training and
evaluating on a relatively small dataset, the mean scores
are higher, however, the variance is significantly larger. The
unified model trained on the FindWho dataset observed fewer
universal attention patterns, biasing the model more toward
the scanpaths of the individual (personalized attention). This
resulted in fewer erroneous predictions as evident from the
higher NSS score. However, given the small size of the
dataset, some observers’ scanpaths were not learned suffi-
ciently, while others were more similar to the average among

the group of observers, and therefore, predicted accurately.
As for the MVVA dataset, which is approximately three

times as large as the FindWho dataset, the unified model was
exposed to more universal attention patterns. We saw that the
robot’s predicted gaze was robust to noise, as the scores of
all participants were highly correlated with one-step-ahead
and multi-step-ahead predictions, both in terms of NSS and
AUCJ. Moreover, the larger size of the dataset meant that
the evaluation was a better representative of the model’s
performance compared to the smaller FindWho dataset.

We conclude that the unified model is robust to noise
since the input arriving from the robot’s sensors differed to a
large degree from the streamed videos. The lighting effects,
distractors, and lower resolution were not very detrimental to
the robot’s performance, suggesting that our social attention
model can be used in real-world settings to predict person-
alized scanpaths. We presume, however, that increasing the
number of steps ahead during the robot evaluation would re-
duce its performance further. This reduction in performance
was observed for the streamed videos under multi-step-ahead
evaluation, suggesting a similar pattern for the robot as well.
Our cognitive robotic simulation approach makes it possible
to improve our social attention models and evaluate their
performances on a physical robot or possibly several robotic
platforms without needing to conduct HRI studies. This
has the advantage of enabling reproducible experiments and
scaling experiments beyond what is possible through HRI.

The scanpath prediction model in this study is subject to
limitations related to intrinsic factors like camera resolution,
microphone sensitivity, and external factors such as light-
ing, motion blur, and background noise, which can affect
prediction accuracy in real-world settings. Additionally, the
structure of the data acquisition and execution pipelines influ-
ences model performance, with delays in data processing or
robot response times potentially hindering real-time execu-
tion. Despite these challenges, the approach holds significant
potential for future applications. It can be adapted to predict
personalized scanpaths for enhanced human-robot interaction
in areas like education and healthcare. Furthermore, by
refining the simulation framework and incorporating more
sensory modalities, the model could be extended to simulate
complex social scenarios, enabling scalable and reproducible
evaluations without extensive human involvement.

VI. CONCLUSION

Our method addressed the limitations of traditional social
robot studies, which often rely on human participants and are
difficult to scale. By applying cognitive robotic simulation,
we were able to conduct reproducible and scalable evalua-
tions, reducing the need for HRI studies in the initial phases.
This approach allows for the refinement and validation of
social attention models in controlled settings, ensuring their
suitability for real-world applications.
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